Researchers identify novel way to target Ebola

September 26, 2017, American Society for Microbiology
The Ebola virus, isolated in November 2014 from patient blood samples obtained in Mali. The virus was isolated on Vero cells in a BSL-4 suite at Rocky Mountain Laboratories. Credit: NIAID

Researchers have identified a potential new way to attack Ebola. Scientists have discovered that a protein called Tim-1 (T-cell immunoglobulin and mucin domain-containing protein 1) plays a key role in the development of the cytokine storm seen in the last stages of Ebola infection. The research was published this week in mBio, an open-access journal of the American Society for Microbiology.

"It was previously thought that the Ebola infects all types of cells but not T-cells, but here we show that the Ebola virus directly interacts with T-cells and specifically Tim-1, and that this is one of the mechanisms that triggers a cytokine storm," said principal study investigator Alexander Bukreyev, PhD, professor in the Departments of Pathology and Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch.

The Ebola virus, commonly lethal within seven to ten days, effectively disables the immune response by a variety of mechanisms. After entering the bloodstream, Ebola heads straight for dendritic cells, the sentinel cells that alert the rest of the immune system to a viral infection. Ebola shuts down this alert system, and left unchecked, the virus multiplies uncontrollably, infecting many organs. Eventually, cells start dying and exploding, releasing their contents into the bloodstream, and the immune system then launches its entire arsenal of weapons at once in what is known as a cytokine storm. While this hurts the virus, it causes massive collateral damage to its host. The more severe the storm, the more likely it is lethal. While several vaccines and therapeutic strategies are currently being assessed, supportive care remains the primary method of treating patients with Ebola.

In the new study, the researchers focused on studying Tim-1 because it was recently demonstrated to be an attachment factor for the Ebola virus. Dr. Bukreyev and colleagues demonstrated that Tim-1 knockout mice had a modified inflammatory response to Ebola infection and some of the mice survived a lethal Ebola virus challenge. In vitro studies demonstrated the Ebola virus directly binds to the Tim-1 protein, activating CD4 T-cells and triggering the cytokine storm.

"This study is important because it shows direct interaction of Ebola virus with T-cells, despite the apparent absence of detectable viral replication in T-lymphocytes. Ebola virus directly binds to isolated T-lymphocytes in a Tim-1-dependent manner," said Dr. Bukreyev. The knowledge, he said, could be used to develop novel therapeutics to target Tim-1 or the cascade of reactions triggered by Tim-1, in order to reduce the storm.

Explore further: Scientists gain better understanding of how Ebola disables people's immune defenses

More information: mBio, DOI: 10.1128/mBio.00845-17 , mbio.asm.org/content/8/5/e00845-17

Related Stories

Scientists gain better understanding of how Ebola disables people's immune defenses

May 24, 2017
University of Texas Medical Branch at Galveston scientists have unlocked mysteries of how the Ebola virus hampers the body's natural defenses to speed the rate of infection and its accompanying lethal disease, according to ...

Researchers find how Ebola disables the immune system

December 6, 2016
A new study at The University of Texas Medical Branch in Galveston sheds light on how Ebola so effectively disables the human immune system.

Super cell to contain deadly Ebola virus discovered in Australia

July 18, 2017
A super cell in the eye has been discovered that can stop the deadly Ebola virus.

Silence is golden—Suppressing host response to Ebola virus may help to control infection

March 22, 2017
The Ebola virus causes a severe, often fatal illness when it infects the human body. Initially targeting cells of the immune system called macrophages, white blood cells that absorb and clear away pathogens, a new study has ...

Cerebrospinal fluid of survivors of Ebola virus disease examined

July 17, 2017
A new research letter published by JAMA Neurology reports on examinations of cerebrospinal fluid collected from survivors of Ebola virus disease (EVD) to investigate potential Ebola virus persistence in the central nervous ...

How do Ebola virus proteins released in exosomes affect the immune system?

March 16, 2017
Cells infected by the deadly Ebola virus may release viral proteins such as VP40 packaged in exosomes, which, as new research indicates, can affect immune cells throughout the body impairing their ability to combat the infection ...

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.