Nanoparticles limit damage in spinal cord injury

September 5, 2017, Northwestern University
Credit: CC0 Public Domain

After a spinal cord injury, a significant amount of secondary nerve damage is caused by inflammation and internal scarring that inhibits the ability of the nervous system to repair itself.

A biodegradable nanoparticle injected after a prevented the inflammation and internal scarring that inhibits the repair process, reports a new Northwestern Medicine study.

As a result, mice with a spinal cord injury receiving the nanoparticle injection were able to walk better after the injury than those that didn't receive it.

The treatment could potentially limit secondary damage to the spinal cord in humans after an injury, if administered a few hours after the accident in an or by paramedics in an ambulance.

"It's not a cure. There is still the original damage, but we were able to prevent the secondary damage," said co-senior author Dr. Jack Kessler, a professor of neurology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neurologist. "It's an exciting potential treatment. We really believe this is something we'll be able to take to the clinic."

Further studies would need to confirm the safety of the injected nanoparticle, Kessler said, but he noted scientists haven't seen any signs of toxicity so far.

The nanoparticles work by binding to the that cause the inflammation—inflammatory monocytes—and diverting them to the spleen. The particles are made of poly(lactic-co-glycolic) acid, a biocompatible substance already approved by the Food and Drug Administration (FDA) for use in re-absorbable sutures.

Developed in the lab of Northwestern scientist Stephen Miller, the particles also are FDA approved as an investigational drug for a new clinical trial in celiac disease.

"The study results suggest nanoparticle infusion could offer a novel and practical potential treatment for human spinal cord injury, a condition for which there are currently no effective treatments," said Miller, the Judy Gugenheim Research Professor of Microbiology-Immunology at Feinberg.

After a spinal cord injury, blood cells that normally couldn't enter the nervous system breech the protective blood brain barrier and flood the injury site. They release noxious chemicals, called inflammatory cytokines, which call in additional inflammatory blood cells. These cells further damage the central nervous system tissue by causing neuronal cell death and scar formation that blocks recovery from paralysis. 

Two types of neurons die. One type—myelin—surrounds the nerve fibers and allows them to carry signals through the nervous system. If the myelin sheath is lost, the cells can no longer conduct signals. The other cells that die are axons, the long fibers extending from the neurons that carry signals from neuron to neuron.

"The new treatment is unusual because it is potentially immediately translatable to human beings," Kessler said. "All we have to do is literally inject these beads into the blood stream. It doesn't require surgery or any fancy intervention."

The tiny beads also are very stable and can be kept in a syringe, Kessler noted. "An emergency medical technician at the site of an accident or somebody in an emergency room when someone is brought in can give this injection immediately," he said.

Other researchers have tried techniques to block inflammatory monocytes from entering the nervous system after a spinal cord , but those methods blocked beneficial and harmful cells. The beneficial cells actually clean up the damage from the trauma and limit the scarring, so previous efforts resulted in only a modest improvement in scarring, cell death and repair.

The nanoparticle technology is being developed commercially by Cour Pharmaceuticals Development Co., which is working with Miller to bring this new approach to patients. Miller is a co-founder of Cour and a member of the scientific advisory board.

Miller also is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Explore further: Using donor stem cells to treat spinal cord injury

Related Stories

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Stem cell transplants may advance ALS treatment by repair of blood-spinal cord barrier

May 15, 2017
Researchers at the University of South Florida show in a new study that bone marrow stem cell transplants helped improve motor functions and nervous system conditions in mice with the disease Amyotrophic Lateral Sclerosis ...

Neural stem cell therapies could eventually play a role in treating spinal cord injuries

May 4, 2017
Researchers in Qatar and Egypt, working with colleagues in Italy and the US, have found that injured spinal cords in rats show signs of tissue regeneration several weeks following injection with neural stem cells.

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Recommended for you

Mechanisms of harmful overhydration and brain swelling

May 22, 2018
We are all familiar with the drawbacks of dehydration, but we rarely hear about the harmful effects of overhydration. For one, excess fluid accumulation can lead to dangerously low sodium levels in the blood or hyponatremia—a ...

Mice brain structure linked with sex-based differences in anxiety behavior

May 22, 2018
Using male individuals has long been a tradition in scientific mice studies. But new research enforces the importance of using a balanced population of male and female mice.

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

In brain stimulation therapy less might be more

May 22, 2018
One of the promising non-invasive brain therapeutic methods is the repetitive transcranial magnetic stimulation (rTMS). During such a procedure, a magnetic coil is placed near the head of the patient and a magnetic pulse ...

Subtle hearing loss while young changes brain function, study finds

May 22, 2018
Cranking up your headphones or scrambling for a front-row spot at rock shows could be damaging more than your hearing.

What helps form long-term memory also drives the development of neurodegenerative disease

May 22, 2018
Scientists have just discovered that a small region of a cellular protein that helps long-term memories form also drives the neurodegeneration seen in Amyotrophic Lateral Sclerosis (ALS). This small part of the Ataxin-2 protein ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.