Researchers report new paths to glaucoma treatment

September 19, 2017, Institute for Basic Science
Schlemm's canal (green) plays a fundamental role in draining the aqueous humor (white arrows) from the anterior chamber of the eye to blood circulation. If the aqueous humor is not able to flow out freely, elevated intraocular pressure damages the optical nerve causing glaucoma and eventually blindness. Credit: IBS

Researchers at the Center for Vascular Research, within the Institute for Basic Science (IBS), have identified a new mechanism involved in the development and progression of glaucoma, and found a potential therapeutic option to treat it. Glaucoma is the second cause of irreversible blindness after cataracts. It affects about 3.5 percent of people aged 40 to 80 worldwide. This study, published in the Journal of Clinical Investigation, could result in the development of therapies to treat primary open-angle glaucoma (POAG), which accounts for three-quarters of all glaucoma patients.

One of the most important risk factors for is increased pressure within the eye. Aqueous humor is constantly produced and drained from the eye transporting nutrients and inflating the eye, giving it a roughly spherical shape. However, if it cannot flow out of the eye chambers freely, an increase in intraocular pressure can damage the optic nerve, leading to vision loss. The precise mechanism of elevated resistance to aqueous humor outflow remains unclear, and although the current treatments for glaucoma tackle the production and outflow of aqueous humor, their outcomes are still poor.

A component of the eye that plays a fundamental role in draining the aqueous humor is Schlemm's canal. It collects the aqueous humor and mediates its transfer from the eye chambers to blood circulation. Endothelial cells on the walls of the canal ship the liquid from the inner to the outer side in "packages" called vacuoles. As the shape and number of the vacuoles reflects the outflow performance, several giant vacuoles are involved in the normal outflow process.

Electron microscope images reveal how the aqueous humor is packaged in vacuoles (arrowheads) inside the cells forming the walls of Schlemm's canal. Aging and glaucoma cause the number and size of giant vacuoles to decrease, meaning that the aqueous humor outflow is compromised. The images compare the giant vacuoles in Schlemm's canals of a healthy mouse (top) and a mouse lacking Tie2 (bottom).Electron microscope images reveal how the aqueous humor is packaged in vacuoles (arrowheads) inside the cells forming the walls of Schlemm's canal. Credit: The Journal of Clinical Investigation

The IBS team explained how imbalances in Schlemm's canal significantly increase the risk of glaucoma. They showed that an important regulator for canal functionality is the angiopoietin-Tie2 system. Angiopoietins, such as Ang1 and Ang2, are proteins important for the growth of new blood vessels and Tie2 is the receptor that binds them. It is known that the angiopoietin-Tie2 system plays a role in Schlemm's canal formation, as Tie2 mutations or angiopoietin absence result in . However, this study clarifies that it is also critically important during adulthood.

The researchers report that adult mice deficient in Tie2 suffer from , retinal neuronal damage and partial visual impairment. Moreover, they had a markedly decreased number of giant vacuoles inside Schlemm's canal endothelial cells, which indicate a poor aqueous humor drainage.

The scientists also investigated if and how this process changes in older mice, as aging is a major risk factor for glaucoma, and showed that aged mice experience reduced levels of giant vacuoles, Tie2, Ang1, and Ang2, as well as other proteins connected with the angiopoietin-Tie2 pathway, like Prox1.

Aging causes a reduction of the protein Tie2, a risk factor for increased intraocular pressure and glaucoma. In this experiment, one eye of mice lacking Ang1 and Ang2 was injected with the premixed ABTAA and Ang2, while the other eye was used as negative control. The researchers observed an increase in the area of Schlemm's canal, together with higher levels of Tie2 (red) and lower intraocular pressure, suggesting that ABTAA restores the canal's functionality. The image includes the transcription factor Prox1 (green) and CD144 (blue), a protein present at the junctions between cells that form the wall of the canal. The angiopoietin-Tie2 system and Prox1 are linked by a vicious circle: the less Tie2 and Ang2, the less Prox1, leading to Schlemm's canal damage, increase in intraocular pressure, and acceleration of glaucoma progression. Credit: Journal of Clinical Investigation

To test whether Tie2 activation had a therapeutic effect, the researchers tested the antibody ABTAA (Ang2-binding and Tie2-activating antibody). They injected it in one eye of mice, while the other eye of the same mice functioned as the negative control. After one week, levels of Tie2 and Prox1, number and diameter of giant vacuoles in Schlemm's canals increased in the ABTAA-treated eyes compared to control eyes. The researchers observed a similar outcome with decreased when ABTAA was injected to the eyes of mice suffering from POAG with regressed Schlemm's canals, indicating that this antibody might be considered as a therapeutic option.

"Slow development of glaucoma treatments is partly due to the poor understanding of the underlying pathogenesis," said KOH Gou Young, the corresponding author of the study. "We hope that identifying the critical role of the angiopoietin-Tie2 system in adult Schlemm's canals will bring a significant boost in the development of therapeutics."

Explore further: Pilocarpine expands schlemm canal in healthy eyes, glaucoma

Related Stories

Pilocarpine expands schlemm canal in healthy eyes, glaucoma

June 25, 2016
(HealthDay)—Pilocarpine expands the Schlemm canal in eyes with and without glaucoma, according to a study published online June 23 in JAMA Ophthalmology.

New glaucoma culprit is found

September 15, 2014
Glaucoma, a leading cause of irreversible blindness, is associated with elevated pressure in the eye. This elevated pressure essentially is due to a plumbing problem. Fluid builds up in the eye, increasing pressure and eventually ...

New glaucoma cause discovered

September 9, 2014
Northwestern Medicine scientists have discovered a novel cause of glaucoma in an animal model, and related to their findings, are now developing an eye drop aimed at curing the disease. They believe their findings will be ...

How blood vessels slow down and accelerate tumor growth

July 18, 2017
Cancer cells have an enormous need for oxygen and nutrients. Therefore, growing tumors rely on the simultaneous growth of capillaries, the fine branching blood vessels that form their supply network. The formation of new ...

Loss of pericytes deteriorates retinal environment

May 16, 2017
Inside the eye, at the interface between blood vessels and the retina, lies a boundary that prevents harmful substances present in the blood from entering the retina. Researchers at the Center for Vascular Research, within ...

Effects of sepsis negated by Tie2 activation-induced vascular protection

April 20, 2016
Sepsis, more commonly known as blood poisoning, is an exceptional healthcare problem. It is more common than heart attacks, and kills more people than any type of cancer and despite this, it remains largely unknown. According ...

Recommended for you

Microglia protect sensory cells needed for vision after retinal detachment

June 18, 2018
A research team at Massachusetts Eye and Ear has shown that microglia, the primary immune cells of the brain and retina, play a protective role in response to retinal detachment. Retinal detachment and subsequent degeneration ...

161 genetic factors for myopia identified

June 15, 2018
The international Consortium for Refractive Error and Myopia (CREAM) recently published the largest-ever genetic study of myopia in Nature Genetics. Researchers from the Gutenberg Health Study at the Medical Center of Johannes ...

Normal eye dominance is not necessary for restoring visual acuity in amblyopia

June 7, 2018
Amblyopia, commonly known as "lazy eye," is a visual disorder common in children. The symptoms often are low acuity in the affected or "lazy" eye and impaired depth perception. Researchers have long believed that the impaired ...

Education linked to higher risk of short-sightedness

June 6, 2018
Spending more years in full time education is associated with a greater risk of developing short-sightedness (myopia), finds a study published by The BMJ today.

First 3D-printed human corneas

May 29, 2018
The first human corneas have been 3-D printed by scientists at Newcastle University, UK.

Satellite imaging techniques may help reduce preventable vision loss

May 11, 2018
By adapting pattern recognition techniques used to assess satellite images, scientists have devised a novel way to diagnose blinding eye diseases, such as age-related macular degeneration.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.