New bowel cancer drug target discovered

October 17, 2017, The Francis Crick Institute
Credit: CC0 Public Domain

Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

"There has long been a need to find more effective and less toxic drugs to treat ," says Laura Novellasdemunt, first author of the paper and researcher at the Francis Crick Institute. "We have found a novel that could provide the basis for a better therapy in patients in the future."

Most bowel cancers are caused by a mutation in a gene called APC that in its healthy form acts to prevent cancer formation. Mutated APC genes cause excess activity of a cell signalling pathway called 'Wnt', which has been associated with bowel cancer for over 20 years.

Wnt signalling is vital for many organs, so drugs designed to block Wnt signalling in cancer cause very toxic side effects in other parts of the body. This has been a major hurdle in developing effective and safe bowel cancer therapies. The team at the Crick have found a way to exclusively target Wnt signalling in , that reduces growth of tumours derived from without the toxic effects on . Their findings will be published in Cell Reports.

The team used the gene-editing tool CRISPR to cut the APC gene at various positions, and found a crucial part of the gene that causes dangerous levels of Wnt signalling and cancer formation.

Using a number of molecular techniques, they identified a protein involved in over activation of the Wnt pathway in cancer. Preventing the activity of this protein by genetic deletion or blocking it with drugs caused a reduction in Wnt signalling in cancer cells and slowed down tumour growth in mice. Importantly, the drug was found to act exclusively on the tumour cells, and have no effect on Wnt signalling in healthy cells.

"Current treatment for bowel cancer is mostly generic, while targeted therapy will help future development of personalised medicine," says Vivian Li, senior author of the paper and Group Leader at the Francis Crick Institute. "The protein that we've identified holds great promise as a therapeutic target for bowel cancer treatment."

The next step will be to see if deleting the gene that makes the protein in mice will prevent them from developing bowel cancer. This will provide further evidence that the protein is a viable anti-cancer drug target.

Explore further: New strategy against childhood cancer

More information: 'USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination' Cell Reports (2017). DOI: 10.1016/j.celrep.2017.09.072 , http://www.cell.com/cell-reports/fulltext/S2211-1247(17)31377-3

Related Stories

New strategy against childhood cancer

July 27, 2017
Neuroblastoma is a cancer in children that originates in the sympathetic nervous system and has a high mortality. Current treatment includes chemotherapy and radiotherapy with their potentially severe side effects; there ...

Active hedgehog signalling in connective tissue cells protects against colon cancer

August 8, 2016
Many types of cancer are caused by gene mutations in the signalling pathways that control cell growth, such as the hedgehog signalling pathway. A new study from the Karolinska Institutet, published in the journal Nature Communications, ...

Scientists discover why bowel cancer sometimes outsmarts treatment

December 1, 2014
A new study that challenges the prevailing view of how bowel cancer develops in the large intestine is published today in Nature Medicine.

Bowel cancer study reveals impact of mutations on protein networks

August 29, 2017
For the first time, scientists have completed a detailed study of many of the proteins in bowel cancer cells. Scientists from the Wellcome Trust Sanger Institute investigated the role proteins play in predicting how common ...

Scientists discover how iron levels and a faulty gene cause bowel cancer

August 9, 2012
High levels of iron could raise the risk of bowel cancer by switching on a key pathway in people with faults in a critical anti-cancer gene, according to a study published in Cell Reports today.

Researchers reveal how cancer cells cope with genetic chaos

January 9, 2017
Scientists have uncovered how tumours are able to grow despite significant damage to the structure and number of their chromosomes - the storage units of DNA - according to two new studies published in Cancer Cell and Cancer ...

Recommended for you

Research team discovers drug compound that stops cancer cells from spreading

June 22, 2018
Fighting cancer means killing cancer cells. However, oncologists know that it's also important to halt the movement of cancer cells before they spread throughout the body. New research, published today in the journal Nature ...

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.