Researchers reveal how cancer cells cope with genetic chaos

January 9, 2017
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute

Scientists have uncovered how tumours are able to grow despite significant damage to the structure and number of their chromosomes - the storage units of DNA - according to two new studies published in Cancer Cell and Cancer Discovery today.

Healthy cells are programmed to self-destruct if there are mistakes in their genes that can't be fixed, but can carry on growing with these abnormalities. Over time, further genetic changes allow them to keep growing, spread, and become resistant to treatment.

But this genetic chaos can be exploited, as too much genetic re-assortment will push cancer cells into cancer cell death too.

Led by Professor Charles Swanton, the Francis Crick Institute scientists, part-funded by Cancer Research UK, have now found two ways that cancer cells are able to survive and grow with this chaos.

In one study, the researchers found that bowel cancer cells with an abnormal number of had a higher number of faults in the BCL9L gene.

They revealed that in , BCL9L helps activate a protein called caspase-2 in response to an abnormal number of chromosomes, triggering a self-destruct sequence.

But the scientists found that by inactivating the BCL9L gene, using various techniques, cells with an uneven number of chromosomes did not activate caspase-2 and continued growing normally.

This suggests that the faults in BCL9L allow bowel cancer cells to cope with an abnormal number of chromosomes, so they can continue to thrive and evolve.

Cancer cells often make errors when dividing, leading to the incorrect number of chromosomes being passed on to daughter cells. While cancer cells can survive a certain amount of this, there is a fine balance before too many errors cause them to die. The second study reveals how cancer cells avoid tipping over the edge.

Scientists found that faults in the internal machinery, known as APC/C, helps cancer cells to slow down the division process, allowing them to avoid making an excessive number of mistakes when distributing chromosomes to daughter cells. This helps the cancer build up genetic diversity between cells within the tumour.

But when the researchers restored the machinery back to full speed in cancer cells they made more genetic errors as they divided - ultimately meaning that they may no longer survive the chaos in their chromosomes.

Professor Charles Swanton, lead researcher based at the Francis Crick Institute in London and part-funded by Cancer Research UK, said: "The development and progression of cancer is fuelled by an unstable genome. It can cause a high degree of diversity between cells, influencing how well treatments work and . If a cancer cell can cope with large scale changes to its DNA then it might gain an advantage that helps it to grow, spread and survive treatment. Until now, we knew very little about how these cancer cells kept growing and evolving.

"We hope that understanding these mechanisms will allow us to limit drug resistance and improve the efficacy of cancer therapies."

Patients whose contain an incorrect number of chromosomes have worse survival as this can lead to cancer evolution and drug resistance.

Professor Karen Vousden, Cancer Research UK's chief scientist, said: "These two studies reveal more about how cancer cells are able to survive with a genetic makeup that would lead to the death of normal cells. This opens the door to potentially exciting new ways to target cancer cells - by exploiting the genetic chaos that lies at the heart of some cancers."

Explore further: Bowel cancers reshuffle their genetic pack to cheat treatment

More information: Swanton, C. et al, BCL9L dysfunction impairs caspase-2 expression permitting aneuploidy tolerance in colorectal cancer Cancer Cell (2017)

Swanton, C. et al, APC/C dysfunction limits excessive cancer chromosomal instability, Cancer Discovery (2017)

Related Stories

Bowel cancers reshuffle their genetic pack to cheat treatment

February 27, 2013
Bowel cancer cells missing one of three genes can rapidly reshuffle their genetic 'pack of cards' – the chromosomes that hold the cell's genetic information. This reshuffling has been previously shown to render tumours ...

Researcher finds key to drug resistant bowel cancer

November 8, 2016
Blocking a molecule could bypass bowel cancer's defence against the drug cetuximab, according to new research presented at the National Cancer Research Institute (NCRI) Cancer Conference in Liverpool.

Scientists pinpoint a new line of defence used by cancer cells

December 8, 2014
Cancer Research UK scientists have discovered a new line of defence used by cancer cells to evade cell death, according to research published in Nature Communications today.

Spreading cancer cells must change their environment to grow

December 3, 2015
Spreading cancer cells arriving in a new part of the body must be able to change their new environment to continue to grow, according to a study by Cancer Research UK scientists at the Francis Crick Institute, published in ...

Researchers reveal how a new class of drugs kills cancer cells

May 20, 2016
A team of Walter and Eliza Hall Institute researchers has worked out how a new class of anti-cancer drugs kills cancer cells, a finding that helps explain how cancer cells may become resistant to treatment.

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.