Study finds that microbial dispersal impacts animal guts

October 3, 2017, University of Oregon
Zebrafish

In a special experiment, zebrafish with defective immune systems swam and dined with counterparts with normal immune systems. In short order, their gut microbiomes became similar.

The experiment at the University of Oregon was designed to test, at a fundamental level, the impact of microbial dispersal among individuals with different microbiomes.

The eight-member team concluded "that inter-host dispersal can alter the diversity and composition of microbial communities and overwhelm the effects of the host's innate immune system." The findings, the team wrote, "suggest that dispersal is an important mechanism driving variation."

The study was published Oct. 2 in the online early edition of the Proceedings of the National Academy of Sciences.

"We have long known that diseases can be caused by the movement of between individuals, but the microbiome has rarely been approached this way," said microbiologist Brendan Bohannan, a professor of biology and member of the UO Institute of Ecology and Evolution. "We were curious if the transmission of microbes is enough to explain the variation that we see in the microbiome composition among individual fish."

The National Institutes of Health-supported research was done in the UO's META Center for Systems Biology. META refers to microbial ecology and theory of animals. The center studies how host-microbe systems work and how that knowledge may advance human health.

For the study, the researchers created a line of zebrafish with defective immune systems by inserting a mutation into a gene required for development of an important component of the immune system.

The fish were maintained under three conditions: individual fish housed alone with no exposure to others; fish cohoused in groups of either immune-compromised members or wild-type individuals; or mixed groups of fish with both immune-compromised and wild-type individuals together. After 21 days, researchers examined the in each fish's intestines and those associated with their food and the surrounding water.

The team, led by doctoral student Adam R. Burns, now a postdoctoral researcher at Stanford University, compared what they found in the fish with predictions from computer modeling of microbial dynamics performed by co-author Elizabeth Miller of the META Center for Systems Biology.

Raised separately, Bohannan said, the immune-compromised and the wild-type fish had markedly different microbes in their guts.

"For those raised in a mixed community, their gut composition converged as their microbes were shared," he said. "Most surprisingly, the fish raised in groups of the same kind—immune-defective or immune-competent—also had gut communities similar to those raised in mixed groups. This result suggests that the movement of microbes does more than just mix microbes between different fish, but it also selects for particular microbes that are especially good at moving from fish to fish."

While the study looked only at the ability of to exchange microbes, it suggests that microbiome variation among different people might also be due to the movement of microbes, and that when people come together for a class or a meeting, for example, they may depart with a microbiome that is somewhat different than when they entered, Bohannan said.

Researchers at the UO and elsewhere had previously suggested that shared environmental spaces could lead to the sharing of microbes, he said. "Those studies, however, couldn't rule out other explanations for the similarities that emerged. For example, in our previous studies of the built environment, we never showed it worked as a means of transmission; it showed that there were enough human-related microbes to make it possible."

Explore further: Thousands of new microbial communities identified in human body

More information: Adam R. Burns et al, Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1702511114

Related Stories

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study suggests some gut microbes may be keystones of health

November 11, 2015
University of Oregon scientists have found that strength in numbers doesn't hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.

Human immune system shapes skin microbiome

October 29, 2013
Our skin plays host to millions of beneficial and potentially disease-causing microorganisms; however, whether our immune system influences these microbial communities to prevent disease is unknown. In a study published online ...

Recommended for you

Immune signature predicts asthma susceptibility

February 16, 2018
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) ...

Scientists identify immune cascade that fuels complications, tissue damage in chlamydia infections

February 13, 2018
Closing a critical gap in knowledge, Harvard Medical School scientists have unraveled the immune cascade that fuels tissue damage and disease development in chlamydia infection—the most common sexually transmitted disease ...

Mouse study adds to evidence linking gut bacteria and obesity

February 12, 2018
A new Johns Hopkins study of mice with the rodent equivalent of metabolic syndrome has added to evidence that the intestinal microbiome—a "garden" of bacterial, viral and fungal genes—plays a substantial role in the development ...

Cancer killing clue could lead to safer and more powerful immunotherapies

February 12, 2018
New research could help to safely adapt a new immunotherapy—currently only effective in blood cancers—for the treatment of solid cancers, such as notoriously hard-to-treat brain tumours.

Mechanism behind autoimmune disorder revealed

February 7, 2018
Northwestern Medicine scientists discovered a previously-unknown mechanism of disease behind a specific autoimmune disorder, findings published in the Proceedings of the National Academy of Sciences.

Study shows how body prevents potentially useful bacteria from causing disease

February 7, 2018
A new study reveals a mechanism by which the immune system may decide whether a bacterial species is a partner in bodily processes or an invader worthy of attack.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.