Researchers identify protein that plays key role in diabetic blindness

October 23, 2017
Left retina with blot hemorrhages and scar tissue from diabetic retinopathy. Credit: M. Elizabeth Hartnett, M.D.

For millions of Americans, their world is dissolving into an unrecognizable blur. Diabetic retinopathy is an eye disease affecting one-third of the estimated 30 million Americans who struggle with diabetes. As the patients' vision slowly fades, it never recovers and few treatments are available.

Researchers at University of Utah Health have identified a protein (ARF6) that when inhibited reduces diabetic retinopathy, a condition that results when blood vessels at the back of the eye leak fluid into the eye, impairing vision. Published in the October 23 issue of The Journal of Clinical Investigation, these results offer an opportunity to develop new treatments for this eye disorder.

"What is exciting about this study is that we and our collaborators identified a compound (NAV-2729) that inhibits ARF6, which is crucial for the development of diabetic retinopathy," explained co-first author Weiquan (Wendy) Zhu, Ph.D., research assistant professor in Internal Medicine at U of U Health.

Studies were conducted in rodents treated to simulate the diabetic condition. By injecting NAV-2729 into the eyes of these animals, vessel leakage, as well as, the overgrowth of blood vessels, another driver of , were significantly reduced.

The long-term efficacy of treatment remains unknown. It also remains to be determined whether the drug will be suitable as a therapeutic intervention for people.

"ARF6 acts like a traffic cop at a busy intersection within a cell," explained Dean Li, Ph.D., vice president, Head of Translational Medicine at Merck & Co. and senior author on the paper. Li is the former associate vice president and chief scientific officer at U of U Health and co-founder of Navigen Inc. "ARF6 orchestrates multiple inflammatory signals that contribute to inflammation common in many diseases, including diabetic eye disease."

ARF6 amplifies and maintains the signal protein (vascular endothelial growth factor (VEGF)) receptor, which stimulates a series of cascading responses, leading to a diseased state in the eye.

Today, patients with can receive monthly anti-VEGF injections directly into the eye to reduce inflammation, a treatment that is successful in only 40 percent of patients. In the study, injections of NAV-2729 into the eyes of diabetic mice were more effective in reducing blood vessel leakage than the anti-VEGF injections.

"Diabetic retinopathy can develop over time, leading to dramatic vision loss that may not be improved with glasses," said M. Elizabeth Hartnett, M.D., professor in Ophthalmology and Visual Sciences at Moran Eye Center and a contributor to this study. "New treatments are needed, because is increasing world-wide and anticipated to increase more in the next decades."

Also new to this study, the researchers identified two proteins ? GEP100 and ARNO ? that play a critical role in the signaling process. These proteins activate ARF6 at two different locations in the cell to continue the signaling cycle.

"We think these results are important because they identified a mechanism by which ARF6 controls VEGF receptor signaling and therefore may have much broader implications, extending to other diseases that involve VEGF receptor activation, such as cancer," said Shannon Odelberg, Ph.D., research associate professor in Internal Medicine at U of U health and corresponding author on the study.

According to Odelberg, ARNO activates ARF6, which shuttles the VEGF receptor into the cell where its signal can be amplified. GEP100 activates ARF6 to recycle the VEGF receptor back to the outside of the cell where it can be reactivated for the signaling process to begin again. This signaling loop triggers disease by increasing blood vessel leak and the formation of new and weak .

The team of researchers plan to continue to explore the role of ARF6 in other inflammatory diseases.

NAV-2729 was identified by A6, a subsidiary company of Navigen Inc, a Salt Lake City drug discovery and development company, whose research scientists contributed to this study. According to Zhu, A6 researchers are pushing forward with development of other compounds, which are more suitable as potential new treatments.

Explore further: Study suggests new way to prevent vision loss in diabetics and premature babies

Related Stories

Study suggests new way to prevent vision loss in diabetics and premature babies

March 22, 2017
Researchers at Bascom Palmer Eye Institute, part of the University of Miami Miller School of Medicine, have identified a new molecule that induces the formation of abnormal blood vessels in the eyes of diabetic mice. The ...

Researchers identify new target for abnormal blood vessel growth in the eyes

April 11, 2017
A team led by Massachusetts Eye and Ear researchers has identified a novel therapeutic target for retinal neovascularization, or abnormal blood vessel growth in the retina, a hallmark of advanced diabetic eye disease (proliferative ...

Likely new treatment target identified for diabetic retinopathy

October 10, 2017
In oxygen-compromising conditions like diabetes, the body grows new blood vessels to help, but the result is often leaky, dysfunctional vessels that make bad matters worse.

Study suggests new way of preventing diabetes-associated blindness

May 25, 2015
Reporting on their study with lab-grown human cells, researchers at The Johns Hopkins University and the University of Maryland say that blocking a second blood vessel growth protein, along with one that is already well-known, ...

Loss of pericytes deteriorates retinal environment

May 16, 2017
Inside the eye, at the interface between blood vessels and the retina, lies a boundary that prevents harmful substances present in the blood from entering the retina. Researchers at the Center for Vascular Research, within ...

Study finds novel therapy that may prevent damage to the retina in diabetic eye diseases

July 27, 2012
Researchers at the University of Michigan Kellogg Eye Center have identified a compound that could interrupt the chain of events that cause damage to the retina in diabetic retinopathy. The finding is significant because ...

Recommended for you

Research reveals biological mechanism of a leading cause of childhood blindness

November 16, 2017
Scientists at the Virginia Tech Carilion Research Institute (VTCRI) have revealed the pathology of cells and structures stricken by optic nerve hypoplasia, a leading cause of childhood blindness in developed nations.

Genetic treatment for blindness may soon be reality

November 11, 2017
Patients who had lost their sight to an inherited retinal disease could see well enough to navigate a maze after being treated with a new gene therapy, according to research presented today at AAO 2017, the 121st Annual Meeting ...

Study finds donor corneas can be safely preserved for longer period

November 10, 2017
Results from a large, national clinical trial show that corneal donor tissue can be safely stored for 11 days without negatively impacting the success of transplantation surgery to restore vision in people with diseases of ...

Exploring the genetics of glaucoma and retinal development

November 10, 2017
Guillermo Oliver, PhD, the Thomas D. Spies Professor of Lymphatic Metabolism, recently published two studies related to the eye, one on retinal formation and the other on the genetics behind glaucoma.

Scientists discover potential treatment to stop glaucoma in its tracks

November 6, 2017
Vision scientists at the University of California, Berkeley, and the University of Toronto have discovered that naturally occurring molecules known as lipid mediators have the potential to halt the progression of glaucoma, ...

New focus on correcting refractive vision

October 25, 2017
While doctors take delight in solving the common issue of refractive vision error by prescribing eye glasses, Flinders University researchers have found that many patients are upset with this solution and claim it affects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.