Genetic predisposition to later puberty causes lower bone density in children and adults

November 27, 2017, Children's Hospital of Philadelphia

People whose genetic makeup triggers a later-than-average start to puberty have lower bone mineral density, especially in their lower spine. Because adolescence is a critical period for accruing bone, this effect may increase a person's risk of osteoporosis and bone fractures later in life.

"If an individual is genetically programmed for later puberty, we found that he or she tends to have lower during childhood as well as in adulthood," said geneticist Struan F. A. Grant, PhD, one of three scientists from Children's Hospital of Philadelphia (CHOP) who co-led a study published Oct. 25, 2017 in the Journal of Bone and Mineral Research.

Scientists already knew that later puberty was linked to lower mineral density, and that both are risk factors for osteoporosis. This study was the first to analyze the associations between genetic determinants of puberty timing and measurements of bone mineral density.

The researchers drew on data from the Bone Mineral Density in Childhood Study (BMDCS), funded by the NIH. That study included sophisticated bone and growth measurements during annual visits for up to seven years in over 2,000 healthy children, adolescents and young adults during 2002 to 2010. Babette S. Zemel, PhD, another co-study leader, was the principal investigator of the BMDCS at CHOP, where she directs the Nutrition and Growth Laboratory.

In the current research, the study team used a relatively new tool called a "genetic risk score" (GRS), which enables collective study of a group of genetic variants in one go. "We generated a genetic risk score in the BMDCS study based on hundreds of genetic variants associated with later puberty in children, and looked for associations with bone mineral density measurements," said first author Diana Cousminer, PhD, a CHOP geneticist with expertise in the genetics of puberty. The researchers performed these analyses separately in boys and girls, and also in publicly available corresponding genetic data on bone mineral density in adults.

For both boys and girls, the GRS for later puberty associated with lower bone mineral density in both a longitudinal cohort of 933 individuals who each had up to seven assessments, and in a cross-sectional cohort of 486 individuals. The results varied according to the part of the skeleton where bone mineral density was measured, with lowest density in the lower back and hip bones.

In a separate analysis called "Mendelian Randomization," the study team found that later puberty caused lower bone density in both adult men and adult women. They also detected a strong causal effect in adolescent girls, while finding no causal relationship for adolescent boys. Cousminer said the number of boys in their analysis may not have been large enough to show a significant effect.

The current research builds on several previous studies of bone health performed by CHOP scientists, using BMDCS data. Earlier this year, they showed that gains in bone mineral continue even after teenagers attain their adult height, reinforcing the importance of late adolescence for building . A 2016 study found that children and adolescents with higher levels of physical activity had higher bone density, even when they had genetic variants that predisposed them to weaker bones. That research, co-led by Zemel and Grant, strengthened the evidence that high-impact, weight-bearing physical activity improves bone health in children and adolescents.

Other researchers have previously shown an epidemiological link between later puberty and the risk of and osteoporosis late in life. The current study did not include data from elderly people, and so could not directly perform a genetic analysis of osteoporosis risk. Cousminer added that the CHOP team's future studies will address this question by using data from older research subjects.

"Now that we are aware of the risks to lifelong if someone is genetically predisposed to later , we can work on strategies such as promoting weight-bearing physical activity, to optimize bone during skeletal development," said Zemel.

Explore further: Late teen years are key period for bone growth

More information: Diana L Cousminer et al, Genetically Determined Later Puberty Impacts Lowered Bone Mineral Density in Childhood and Adulthood, Journal of Bone and Mineral Research (2017). DOI: 10.1002/jbmr.3320

Related Stories

Late teen years are key period for bone growth

July 6, 2017
The late adolescent years are an important period for gaining bone mineral, even after a teenager attains his or her adult height. Scientists analyzing a racially diverse, multicenter sample from a large, federally funded ...

Gene variants found to strongly improve bone density in girls

March 22, 2016
Pediatric researchers have found that rare genetic changes strongly increase the likelihood that a child will have higher bone density, but only in girls. Because childhood and adolescence are critical periods for bone formation, ...

Physical activity builds stronger bones, even in children with genetic risk

June 13, 2016
Exercise, particularly high-impact activity, builds stronger bones in children, even for those who carry genetic variants that predispose them to bone weakness, according to new research. The scientists say their findings ...

Genes leave some kids prone to weakness in wrist bones

June 29, 2015
Pediatric researchers have discovered gene locations affecting bone strength in wrist bones, the most common site for fractures in children. Children who have those genetic variants may be at higher-than-average risk of wrist ...

Bone strength + bone mineral density screening cost-effective

October 29, 2017
(HealthDay)—Combined assessment of bone strength and bone mineral density is a cost-effective strategy for osteoporosis screening in postmenopausal women, according to a study published in the November issue of Radiology.

Largest ever genetic study marks likely osteoporosis treatment target

September 5, 2017
Scientists are homing in on a potential treatment for osteoporosis, after performing the largest ever genetic study of the common age-related bone-thinning disease.

Recommended for you

Dialysis patients at risk of progressive brain injury

December 10, 2018
Kidney dialysis can cause short-term 'cerebral stunning' and may be associated with progressive brain injury in those who receive the treatment for many years. For many patients with kidney failure awaiting a kidney transplant ...

PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds

December 6, 2018
Although relatively rare in the United States, and accounting for fewer than 5 percent of tuberculosis cases worldwide, TB of the brain—or tuberculosis meningitis (TBM)—is often deadly, always hard to treat, and a particular ...

Silicosis is on the rise, but is there a therapeutic target?

December 6, 2018
Researchers from the CNRS, the University of Orléans, and the company Artimmune, in collaboration with Turkish clinicians from Atatürk University, have identified a key mechanism of lung inflammation induced by silica exposure, ...

Infectivity of different HIV-1 strains may depend on which cell receptors they target

December 6, 2018
Distinct HIV-1 strains may differ in the nature of the CCR5 molecules to which they bind, affecting which cells they can infect and their ability to enter cells, according to a study published December 6 in the open-access ...

Protecting cell powerhouse paves way to better treatment of acute kidney injury

December 6, 2018
For the first time, scientists have described the body's natural mechanism for temporarily protecting the powerhouses of kidney cells when injury or disease means they aren't getting enough blood or oxygen.

New study uncovers why Rift Valley fever is catastrophic to developing fetuses

December 5, 2018
Like Zika, infection with Rift Valley fever virus can go unnoticed during pregnancy, all the while doing irreparable—often lethal—harm to the fetus. The results of a new study, led by researchers at the University of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.