Researchers solve mystery behind red blood cell maturation

November 2, 2017, Singapore University of Technology and Design
Representative fluorescence microscopy image of mature (Red) and immature (green and red) human reticulocytes. Credit: Singapore University of Technology & Design)

Red blood cells are formed in the bone marrow from haematopoietic stem cells via a complex process known as erythropoiesis. Towards the end of this process, immature red blood cells also known as reticulocytes (multi-lobular and spherical) undergo dynamic re-arrangements to yield highly deformable biconcave erythrocytes (also known as normocytes), which performs gaseous and nutrient exchange throughout the body. However, molecular mechanisms underpinning these remarkable morphological and bio-mechanical transformations remained largely unknown. Through quantitative profiling of protein composition and imaging, a research team lead by Singapore University of Technology and Design (SUTD) Assistant Professor Rajesh Chandramohanadas is now able to explain this intriguing biological phenomenon.

Reticulocytes form a small proportion of human peripheral blood, often less than 2% of the total red blood . Therefore it is difficult to purify them in sufficient quantities and quality for large-scale experiments. To circumvent this problem, SUTD researchers purified young reticulocytes from cord blood (which contains ~ 4% reticulocytes) from normal term pregnancies. A magnetic selection protocol using an antibody against transferrin receptor was used to isolate immature red blood cells. To reduce sample complexity and increase overall coverage, these cells were again fractionated into membrane and soluble samples. Thereafter, a sophisticated quantitative mass spectrometry technique was employed which resulted in the identification and quantification of more than 1800 proteins. This is by far the most comprehensive information on composition for human red blood cells.

The team carefully analysed this large dataset and short-listed certain proteins such as talin and tubulin, which dramatically changed between immature and mature blood cells. Although such proteins are known to confer stiffness to , these proteins were confirmed as residues that remained in the reticulocytes from .

The researchers then looked at the abundance of other proteins that are responsible for maintaining cellular architecture, such as a group of proteins called spectrins. Although the overall amount of spectrins remained comparable between reticulocytes and normocytes, the arrangement of these proteins were drastically different in reticulocytes as observed through microscopy. Filaments that formed spectrin-based network shrunk by roughly 20% during maturation, and this could account for the transition in shape and deformability of reticulocytes.

This research was published in top Haematology journal British Journal of Haematology, and its first authors are postdoctoral fellow Dr. Trang Chu and research assistant Mr. Ameya Sinha from SUTD. The research team also comprised of immunologists, biochemists and clinicians from various organizations such as Astar-SIgN (Laurent Renia and Benoit Malleret), KK Hospital (Jerry K. Chan) National University of Singapore (Bruce Russell), NTU (Sze Su Kwan and Navin Verma) and Mahidol-Oxford Tropical Medicine Research Unit (Francois Nosten).

Principal investigator Prof Chandramohanadas said: "This robust dataset on the of human could help promote understanding of pathological conditions that affect blood cell maturation and function. Furthermore, these results will facilitate targeted analysis of interactions between cells and infectious agents- such as Plasmodium vivax malaria parasites which only infect young human reticuocuytes."

Explore further: Understanding the diversity of immature red blood cells could help protect against malaria

More information: Trang T. T. Chu et al, Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation, British Journal of Haematology (2017). DOI: 10.1111/bjh.14976

Related Stories

Understanding the diversity of immature red blood cells could help protect against malaria

May 21, 2014
Red blood cells are released into the blood stream in their immature form—reticulocytes—from the bone marrow where they develop. Reticulocytes are important markers for certain blood disorders and infectious diseases ...

Cozy niches: Certain host cell environments make malaria parasites resistant to drugs

June 4, 2015
Of the two species of Plasmodium parasites commonly infecting humans, P. vivax grows exclusively in immature red blood cells called reticulocytes. P. falciparum can infect reticulocytes, but it grows primarily in mature red ...

Malaria-infected cells may latch onto healthy blood cells for protection

November 5, 2014
The distinctive 'clumping' of blood cells that blocks vessels and causes tissue damage in malaria-infected patients is the focus of a multinational collaboration, which includes A*STAR researchers.

Malarial parasites dodge the kill

May 4, 2015
Scientists have uncovered a potential mode of parasite drug resistance in malaria infection, according to a report published in The Journal of Experimental Medicine.

Mystery solved: How thyroid hormone prods red blood cell production

September 5, 2017
For more than a century, physicians have anecdotally noted that patients with an underactive thyroid—often caused by iodine deficiency—tended to also have anemia. But the link between thyroid hormone and red blood cell ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.