Researchers solve mystery behind red blood cell maturation

November 2, 2017, Singapore University of Technology and Design
Representative fluorescence microscopy image of mature (Red) and immature (green and red) human reticulocytes. Credit: Singapore University of Technology & Design)

Red blood cells are formed in the bone marrow from haematopoietic stem cells via a complex process known as erythropoiesis. Towards the end of this process, immature red blood cells also known as reticulocytes (multi-lobular and spherical) undergo dynamic re-arrangements to yield highly deformable biconcave erythrocytes (also known as normocytes), which performs gaseous and nutrient exchange throughout the body. However, molecular mechanisms underpinning these remarkable morphological and bio-mechanical transformations remained largely unknown. Through quantitative profiling of protein composition and imaging, a research team lead by Singapore University of Technology and Design (SUTD) Assistant Professor Rajesh Chandramohanadas is now able to explain this intriguing biological phenomenon.

Reticulocytes form a small proportion of human peripheral blood, often less than 2% of the total red blood . Therefore it is difficult to purify them in sufficient quantities and quality for large-scale experiments. To circumvent this problem, SUTD researchers purified young reticulocytes from cord blood (which contains ~ 4% reticulocytes) from normal term pregnancies. A magnetic selection protocol using an antibody against transferrin receptor was used to isolate immature red blood cells. To reduce sample complexity and increase overall coverage, these cells were again fractionated into membrane and soluble samples. Thereafter, a sophisticated quantitative mass spectrometry technique was employed which resulted in the identification and quantification of more than 1800 proteins. This is by far the most comprehensive information on composition for human red blood cells.

The team carefully analysed this large dataset and short-listed certain proteins such as talin and tubulin, which dramatically changed between immature and mature blood cells. Although such proteins are known to confer stiffness to , these proteins were confirmed as residues that remained in the reticulocytes from .

The researchers then looked at the abundance of other proteins that are responsible for maintaining cellular architecture, such as a group of proteins called spectrins. Although the overall amount of spectrins remained comparable between reticulocytes and normocytes, the arrangement of these proteins were drastically different in reticulocytes as observed through microscopy. Filaments that formed spectrin-based network shrunk by roughly 20% during maturation, and this could account for the transition in shape and deformability of reticulocytes.

This research was published in top Haematology journal British Journal of Haematology, and its first authors are postdoctoral fellow Dr. Trang Chu and research assistant Mr. Ameya Sinha from SUTD. The research team also comprised of immunologists, biochemists and clinicians from various organizations such as Astar-SIgN (Laurent Renia and Benoit Malleret), KK Hospital (Jerry K. Chan) National University of Singapore (Bruce Russell), NTU (Sze Su Kwan and Navin Verma) and Mahidol-Oxford Tropical Medicine Research Unit (Francois Nosten).

Principal investigator Prof Chandramohanadas said: "This robust dataset on the of human could help promote understanding of pathological conditions that affect blood cell maturation and function. Furthermore, these results will facilitate targeted analysis of interactions between cells and infectious agents- such as Plasmodium vivax malaria parasites which only infect young human reticuocuytes."

Explore further: Understanding the diversity of immature red blood cells could help protect against malaria

More information: Trang T. T. Chu et al, Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation, British Journal of Haematology (2017). DOI: 10.1111/bjh.14976

Related Stories

Understanding the diversity of immature red blood cells could help protect against malaria

May 21, 2014
Red blood cells are released into the blood stream in their immature form—reticulocytes—from the bone marrow where they develop. Reticulocytes are important markers for certain blood disorders and infectious diseases ...

Cozy niches: Certain host cell environments make malaria parasites resistant to drugs

June 4, 2015
Of the two species of Plasmodium parasites commonly infecting humans, P. vivax grows exclusively in immature red blood cells called reticulocytes. P. falciparum can infect reticulocytes, but it grows primarily in mature red ...

Malaria-infected cells may latch onto healthy blood cells for protection

November 5, 2014
The distinctive 'clumping' of blood cells that blocks vessels and causes tissue damage in malaria-infected patients is the focus of a multinational collaboration, which includes A*STAR researchers.

Malarial parasites dodge the kill

May 4, 2015
Scientists have uncovered a potential mode of parasite drug resistance in malaria infection, according to a report published in The Journal of Experimental Medicine.

Mystery solved: How thyroid hormone prods red blood cell production

September 5, 2017
For more than a century, physicians have anecdotally noted that patients with an underactive thyroid—often caused by iodine deficiency—tended to also have anemia. But the link between thyroid hormone and red blood cell ...

Recommended for you

Exercise-induced hormone irisin triggers bone remodeling in mice

December 13, 2018
Exercise has been touted to build bone mass, but exactly how it actually accomplishes this is a matter of debate. Now, researchers show that an exercise-induced hormone activates cells that are critical for bone remodeling ...

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Law professor suggests a way to validate and integrate deep learning medical systems

December 13, 2018
University of Michigan professor W. Nicholson Price, who also has affiliations with Harvard Law School and the University of Copenhagen Faculty of Law, suggests in a Focus piece published in Science Translational Medicine, ...

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Pain: Perception and motor impulses arise in brain independently of one another

December 13, 2018
Pain is a negative sensation that we want to get rid of as soon as possible. In order to protect our bodies, we react by withdrawing the hand from heat, for example. This action is usually understood as the consequence of ...

Researchers give new insight to muscular dystrophy patients

December 13, 2018
New research by University of Minnesota scientists has revealed the three-dimensional structure of the DUX4 protein, which is responsible for the disease, facioscapulohumeral muscular dystrophy (FSHD). Unlike the majority ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.