Scientists develop a sensor for the most important human cancer gene

November 14, 2017
Model of the TP53 sensor. The Sensor is symbolized as a 'thermometer' that displays the TP53 status in the cell. Credit: TU Dresden, Frank Buchholz

If it burns in a house smoke detectors alert us hence protecting life. A molecular smoke alert has now been developed by Dresden researchers for the TP53 gene, the most important human cancer gene. The alert goes on if the TP53 gene is mutated in cells. The molecular smoke detector works like a TP53 sensor, which monitors the correct function of the gene. A non-functional TP53 gene is going to activate the sensor, which initiates cell death. Results from this study from the research team of Prof. Frank Buchholz are now published in the journal Nature Communications.

Cancer is caused by changes in the human genome. Mutations in oncogenes and in accumulate unrecognized over time and lead to uncontrolled cell proliferation eventually. In 50% of all human tumors the tumor suppressor gene TP53 is no longer functional being the most frequently mutated gene. TU Dresden-Scientists from the University Cancer Center UCC at the University Hospital Carl Gustav Carus, the National Center for Tumor Diseases NCT Dresden and the German Cancer Consortium DKTK Dresden concluded that the formation of a TP53 sensor could suppress tumor formation at a very early stage.

To achieve this they designed a genetic element that makes cell function dependent on normal TP53. If the TP53 function is interrupted, the sensor gets activated and initiates cell death. "We treat cancer long after they have gone through the transformation process," says Prof. Dr. med. Frank Buchholz describing the current situation. As a result, therapy is often too late to be able to eliminate all cancer cells in the body. Furthermore, due to additional mutations, therapy-resistant clones quickly emerge from some .

"The TP53 sensor enables an active precocious intervention for the first time. Our results show that cells with TP53 mutations can be selectively detected and eliminated at an early stage. Hence, the transformation process is prevented." The researchers plan to use their initial findings to develop new cancer diagnostics and to establish a protection system against cancer mutations in the long-term.

Explore further: New insights into potent cancer tumour suppressor gene

More information: Jovan Mircetic et al, Development of a genetic sensor that eliminates p53 deficient cells, Nature Communications (2017). DOI: 10.1038/s41467-017-01688-w

Related Stories

New insights into potent cancer tumour suppressor gene

September 22, 2016
New insight into the function of a gene important in the suppression of cancer is published today. Researchers at the National University of Ireland Galway have shown that the TP53 gene has even greater anti-cancer activity ...

Mutations unveiled that predispose lung cancers to refractory histologic transformation

June 7, 2017
Cancer pedigree analysis reveals the mutations in RB1 and TP53 genes play a key role in treatment-resistant, cancer cell-type transformation during EGFR inhibitor therapy for lung cancers.

Specific gene in the tumor determines the effectiveness of cancer treatment

April 14, 2016
A cancer treatment can be basically effective but, equally, it may have negative consequences. Hitherto, it has not been possible to determine prior to treatment whether a patient will benefit from standard cancer treatment ...

Germline TP53 mutations in patients with early-onset colorectal cancer

March 12, 2015
In a group of patients diagnosed with colorectal cancer at 40 or younger, 1.3 percent of the patients carried germline TP53 gene mutations, although none of the patients met the clinical criteria for an inherited cancer syndrome ...

Yin and yang: Immune signaling protein has opposing roles in breast cancer development

June 8, 2015
Countering previously held beliefs, researchers at the University of Texas MD Anderson Cancer Center have discovered that inhibiting the immune receptor protein TLR4 may not be a wise treatment strategy in all cancers. This ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Recommended for you

Researchers discover specific tumor environment that triggers cells to metastasize

November 21, 2017
A team of bioengineers and bioinformaticians at the University of California San Diego have discovered how the environment surrounding a tumor can trigger metastatic behavior in cancer cells. Specifically, when tumor cells ...

New study points the way to therapy for rare cancer that targets the young

November 21, 2017
After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.