Shifting protein networks in breast cancer may alter gene function

November 30, 2017, Public Library of Science
Micrograph showing a lymph node invaded by ductal breast carcinoma, with extension of the tumour beyond the lymph node. Credit: Nephron/Wikipedia

A given gene may perform a different function in breast cancer cells than in healthy cells due to changes in networks of interacting proteins, according to a new study published in PLOS Computational Biology.

Previous research has shown that a protein produced by a single gene can potentially have different functions in a cell depending on the proteins with which it interacts. Protein interactions can differ depending on context, such as in different tissues or developmental stages. For instance, one protein produced by a key fruit fly gene serves two separate functions over the course of fly development.

Building on this concept, Sushant Patkar of the University of Maryland and colleagues hypothesized that alterations in protein interaction networks in breast may change the function of individual genes. To test this idea, they analyzed protein expression in 1,047 breast cancer tumors and 110 healthy breast tissue samples, using data from The Cancer Genome Atlas project.

The researchers developed a computational framework to determine the structure of protein interaction networks in each sample and infer which genes performed different cellular functions within these networks. Then, they compared the number of genes inferred to perform each function in cancer cells relative to .

The analysis revealed that several functions were associated with more or fewer genes in cancer cells than in healthy cells, but not because of changes in the expression of these genes. Instead, their function changed due to changes in their protein interaction networks. The researchers also showed that profiling a patient's tumor tissue according to these functional shifts served as an effective method to predict their cancer subtype and their survival.

"While it is completely plausible for a gene to lose or acquire novel biological functions, examples of such changes have predominantly been observed in the context of evolution," Patkar says. "We have developed a bioinformatics approach that suggests that such changes might alternatively occur through changes in the interactions of proteins encoded by the gene."

Next, the team plans to validate their as a tool to assess changes in gene function in other biological contexts, such as in other diseases and tissues.

Explore further: Molecular fingerprint of breast tumors linked to immune response in bloodstream

More information: Patkar S, Magen A, Sharan R, Hannenhalli S (2017) A network diffusion approach to inferring sample-specific function reveals functional changes associated with breast cancer. PLoS Comput Biol 13(11): e1005793. doi.org/10.1371/journal.pcbi.1005793

Related Stories

Molecular fingerprint of breast tumors linked to immune response in bloodstream

September 28, 2017
Using newly developed software, researchers have shown that genes and molecular processes in breast cancer tumor cells are tightly linked to genes and processes in blood cells, including immune system cells. The findings ...

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

Improved analysis of kidney cancer

August 11, 2017
Every year, just over 1000 people are diagnosed with kidney cancer in Sweden. The three most common variants are clear cell, papillary and chromophobe renal cancer. Researchers compare the gene expression in tumour cells ...

Study discovers proteins which suppress the growth of breast cancer tumors

June 12, 2017
Researchers at the University of Birmingham have found that a type of protein could hold the secret to suppressing the growth of breast cancer tumours.

Multiplexed immunofluorescence reveals protein expression alterations in breast cancer

May 5, 2016
Breast cancers are highly variable and the specific characteristics of a tumor determine treatment response and patient outcome. Genetic sequencing has improved our understanding of the genetic changes that underlie cancer ...

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.