Molecular fingerprint of breast tumors linked to immune response in bloodstream

September 28, 2017, Public Library of Science
MIxT identifies links between molecular processes in breast cancer tumors and blood cells. Credit: Vanessa Dumeaux

Using newly developed software, researchers have shown that genes and molecular processes in breast cancer tumor cells are tightly linked to genes and processes in blood cells, including immune system cells. The findings are published in PLOS Computational Biology.

Even if a tumor has not metastasized, its effects extend far beyond the part of the body in which it is found. For instance, a tumor influences the expression of genes in that are involved in the body's response to cancer. These cells circulate throughout the body in the bloodstream.

In the new study, a team led by Vanessa Dumeaux during her time at McGill University examined links between gene expression in breast cancer tumors and in the bloodstream. They built a new software tool called MIxT (Matched Interactions across Tissues) that uses computational and statistical methods to find and investigate links between gene expression in different body tissues.

The team used MIxT to analyze gene expression according to RNA sequences found in blood and tumor samples from 173 . The software allowed them to cluster genes into groups associated with specific and see which processes in tumors and were associated with each other.

The analysis showed that links between molecular processes in breast cancer tumors and the bloodstream do exist, but that they vary according to the tumor subtype. For instance, the researchers found immune system-suppressing processes operating in conjunction with certain breast cancer subtypes, including the basal breast cancer subtype.

"This effort moves the community beyond the barriers of most previous molecular studies that focused exclusively on immune cells in the tumor microenvironment, providing a broader picture of how our bodies and immune system respond to the challenges of the presence of a particular tumor," Dumeaux says.

The findings could lead to future investigation into potential new ways to treat and monitor by looking outside the tumor and exploiting the patient's systemic immune system response.

Explore further: Study sheds light on why some breast cancers have limited response to immunotherapy

More information: Dumeaux V, Fjukstad B, Fjosne HE, Frantzen J-O, Holmen MM, Rodegerdts E, et al. (2017) Interactions between the tumor and the blood systemic response of breast cancer patients. PLoS Comput Biol 13(9): e1005680. doi.org/10.1371/journal.pcbi.1005680

Related Stories

Study sheds light on why some breast cancers have limited response to immunotherapy

August 21, 2017
UNC Lineberger Comprehensive Cancer Center researchers have identified a possible reason why some aggressive breast cancers are unresponsive to certain immunotherapy treatments, as well as a potential solution.

Silencing cancer cell communication may reduce the growth of tumors

January 30, 2017
In several types of cancer, elevated expression of the chemokine receptor CCR4 in tumors is associated with poor patient outcomes. Communication through CCR4 may be one mechanism that cancer cells use to create a pro-tumor ...

Immune-response genes affecting breast tumor eradication

May 3, 2012
Breast cancer patients whose tumors express high levels of genes related to immune response are more likely to have their tumor completely eradicated by pre-operative chemotherapy compared to patients with low expression ...

The paradoxical roles of well-known cancer genes are mediated by oxygen levels in breast cancer

January 4, 2017
Oxygen deprivation, or hypoxia, has been identified by A*STAR researchers as a key factor in switching the function of major cancer genes from tumor-promoting to tumor-suppressing in a breast cancer subtype, suggesting the ...

Blood vessels and the immune system talk to each other; implications for cancer treatment

April 3, 2017
Some cancer therapies aim at stopping tumor growth by affecting the blood vessels that nurture the tumor mass, while others act on the immune system attempting to eliminate the tumor. Researchers at Baylor College of Medicine ...

Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor

May 16, 2016
Not every breast cancer tumor follows the same path to grow. Some tumors have the assistance of myeloid-derived suppressor cells (MDSCs), a diverse type of immune cell involved in the suppression of the body's response against ...

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.