Brainstem changes underlie sound sensitivity in fragile X mouse model

December 26, 2017, Society for Neuroscience
Ventral cochlear nucleus cells stained with fluorescent Nissl in wild type (top) and Fmr1 KO (bottom) mice at P1, P6, and P14. Credit: Rotschafer & Cramer, eNeuro (2017)

Developmental changes in the brainstem driven by fragile X syndrome (FXS)—a condition that often co-occurs with autism spectrum disorder in humans—may underlie the hypersensitivity to sound observed in both humans and a mouse model of the disorder, according to animal research published in eNeuro.

Sarah Rotschafer and Karina Cramer studied groups of sound-processing neurons in the brainstem of mice that are genetically altered to model FXS through reduced expression of the fragile X mental retardation protein (FMRP). The researchers found reduced cell sizes in FXS mice of different ages relative to mice with typical levels of FMRP.

These differences emerged in the studied cell groups at various stages of development, including very early on before the circuits supporting hearing have come online.

Despite FXS being more common in males than females, the authors did not observe any sex differences in the development of the .

These findings indicate a role for FMRP in the development of the auditory system, which is disrupted in this FXS mouse model.

Explore further: Treatment window for Fragile X likely doesn't close after childhood

More information: Developmental emergence of phenotypes in the auditory brainstem nuclei of Fmr1 knockout mice, eNeuro DOI: 10.1523/ENEURO.0264-17.2017

Related Stories

Treatment window for Fragile X likely doesn't close after childhood

March 20, 2017
Brain samples from humans show that the treatment window for Fragile X syndrome likely remains open well into maturity after childhood, when previous tests with mice indicated it might close, according to a new Drexel University-led ...

New role for fragile X protein could offer clues for treatment

September 28, 2017
The protein behind fragile X syndrome acts as a genetic conductor, orchestrating a symphony of genes that help shape DNA's 3-D structure.

Study implicates glial cells in fragile X syndrome

October 4, 2016
Research on fragile X syndrome, the most common inherited cause of mental retardation, has focused mostly on how the genetic defect alters the functioning of neurons in the brain. A new study focusing on a different type ...

Delayed development of fast-spiking neurons linked to Fragile X

December 5, 2017
Northwestern Medicine scientists have discovered a delay in the maturation of fast-spiking neurons in the neonatal cortex of a mouse model of Fragile X syndrome, a human neurodevelopmental disorder.

Study finds link between fragile X syndrome gene and dysregulated tissue growth

December 5, 2017
Researchers at Indiana University have found a previously undetected link between the gene that causes fragile X syndrome and increased tissue growth. The link could reveal a key biological mechanism behind the serious physical ...

Recommended for you

Scientists reveal new details of how a naturally occurring hormone can boost memory in aging mice

October 23, 2018
A Columbia study in mice has revealed new details of how a naturally occurring bone hormone reverses memory loss in the aging brain. These findings about the hormone, called osteocalcin, stand to spur further investigations ...

Mutation in common protein triggers tangles, chaos inside brain cells

October 23, 2018
A pioneer in the study of neural cells revealed today (Oct. 23, 2018) how a single mutation affecting the most common protein in a supporting brain cell produces devastating, fibrous globs. These, in turn, disturb the location ...

New study finds 'timing cells' in the brain may underlie an animal's inner clock

October 23, 2018
Are you taking your time when feeding your pet? Fluffy and Fido are on to you—and they can tell when you are dawdling.

Neurons reliably respond to straight lines

October 23, 2018
Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, ...

Nerve-on-a-chip platform makes neuroprosthetics more effective

October 23, 2018
EPFL scientists have developed a miniaturized electronic platform for the stimulation and recording of peripheral nerve fibers on a chip. By modulating and rapidly recording nerve activity with a high signal-to-noise ratio, ...

Researchers find mice lacking gene for PTPRD self-administer less cocaine

October 23, 2018
A team with members affiliated with several institutions in the U.S. has found that disabling the gene responsible for the production of the protein tyrosine phosphatase D (PTPRD) caused test mice to self-administer less ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.