Gene mutation causes chronic bad breath

December 19, 2017, Radboud University

For the first time, researchers have uncovered that bad breath can be caused by a genetic defect. A mutation in the gene SELENBP1 leads to the absence of the protein that converts the sulphur compound methanethiol. Researchers from Radboud University and Radboud university medical center have published these findings in Nature Genetics.

Bad breath (halitosis) is usually caused by bacteria in the oral cavity that produce sulphur compounds. Little is known about other causes of , but it has long been thought that it might also have a genetic cause. In the nineties, Dr. Albert Tangerman (Radboud university medical center, internal medicine) discovered a Dutch family with several members having bad breath.

Together with Professor of Inborn errors of Metabolism Ron Wevers, he looked for a cause. They came across sulphur compounds, including the foul-smelling methanethiol. This compound gives rise to a strong cabbage-like odour. "Methanethiol is produced in large amounts in the intestines, and can originate from food. We believed that the protein responsible for getting rid of methanethiol was defective in these patients", says Wevers, "however, we could not find a lead for this in their metabolism. The process by which the body counteracts this compound was unknown. So at that point we were stuck."

From bacterium to human

Wevers presented this problem at several conventions and as a result was contacted by families from Germany and Portugal with the same problem. In addition, a collaboration with Microbiology Professor Huub Op den Camp, a specialist in sulphur conversion in bacteria, was established. Together with researchers from University of Warwick, they recently discovered a protein in the bacterium Hyphomicrobium that converts methanethiol: methanethiol oxidase.

The bacterium feeds on contamination in sewage, including sulphur compounds like methanethiol, removing them from the water.

The researchers then looked to see whether the gene encoding the methanethiol oxidase protein in the bacteria was also present in humans. The human gene that corresponded most closely was SELENBP1. Huub Op den Camp: But the function of the corresponding human protein SELENBP1 was unknown. This also meant we did not know which compounds our body converts methanethiol into. The gene SELENBP1 is reported in the literature to be involved in tumour suppression. However, we immediately hypothesized that the absence of this protein could be the cause of bad breath in these patients."

Widely distributed defect in metabolism

Wevers and Op den Camp investigated the breath, blood and urine of these patients, and found an increased amount of methanethiol and dimethyl sulphide. Wevers: "That was a direct clue that in these patients' metabolism an error occurs, leading to the accumulation of four sulphur compounds, including methanethiol, in their blood. Methanethiol and dimethyl sulphide are extremely volatile and are thus easily exhaled via the lungs. Because we had now identified the human protein converting methanethiol, SELENBP1, we looked at these patients' DNA. We found they all had mutations in the gene SELENBP1."

Further research produced more evidence for this new discovery. For example, these patients' skin cells had significantly lower levels of the and showed little or no enzyme activity. This same pattern was found in knock-out mice. This led to the conclusion that SELENBP1 is indeed a methanethiol oxidase and that mutations in this gene cause chronic bad breath. This mutation might be more common than we think: the researchers calculated that about 1 in 90,000 people carry the mutation. No cure is available for these patients. For the present, they can reduce bad breath only by dietary measures. Further research will focus on the development of a possible therapy, and on the role of deriving from methanethiol in a healthy metabolism.

Explore further: Intellectual disabilities caused by protein defect

More information: Arjan Pol et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis, Nature Genetics (2017). DOI: 10.1038/s41588-017-0006-7

Related Stories

Intellectual disabilities caused by protein defect

September 4, 2017
Intellectual disabilities are often caused by a mutation that damages a gene, preventing the associated protein from functioning properly. However, a mutation can also change the function of a gene. As a result, the gene ...

Recommended for you

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Study shows DNA methylation related to liver disease among obese patients

July 18, 2018
DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.