New antifungal provides hope in fight against superbugs

January 12, 2018, Case Western Reserve University
Candida albicans, which is related to Candida auris. Credit: CDC

Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant to many antifungals, meaning once a person is infected, there are limited treatment options. But in a recent Antimicrobial Agents and Chemotherapy study, researchers confirmed a new drug compound kills drug-resistant C. auris, both in the laboratory and in a mouse model that mimics human infection.

The works through a novel mechanism. Unlike other antifungals that poke holes in yeast cell membranes or inhibit sterol synthesis, the new drug blocks how necessary proteins attach to the . This means C. auris yeast can't grow properly and have a harder time forming drug-resistant communities that are a stubborn source of hospital outbreaks. The drug's target—a yeast enzyme called Gwt1—is also highly conserved across fungal species, suggesting the new drug could treat a range of infections.

The drug is first in a new class of antifungals, which could help stave off drug resistance. Even the most troublesome strains are unlikely to have developed workarounds for its mechanism of action, says study lead Mahmoud A. Ghannoum, PhD, professor of dermatology at Case Western Reserve University School of Medicine and director of the Center for Medical Mycology at Case Western Reserve University and University Hospitals Cleveland Medical Center.

In the new study, Ghannom's team tested the drug against 16 different C. auris strains, collected from infected patients in Germany, Japan, South Korea, and India. When they exposed the isolates to the new drug, they found it more potent than nine other currently available antifungals. According to the authors, the concentration of study drug needed to kill C. auris growing in laboratory dishes was "eight-fold lower than the next most active drug, anidulafungin, and more than 30-fold lower than all other compounds tested."

The researchers also developed a new mouse model of invasive C. auris for the study. Said Ghannoum, "To help the discovery of effective drugs it will be necessary to have an animal model that mimics this infection. Our work helps this process in two ways: first we developed the needed animal model that mimics the infection caused by this devastating yeast, and second, we used the developed model to show the drug is effective in treating this infection."

They studied immunocompromised mice infected with C. auris via their tail vein—similar to very sick humans in hospitals who experience bloodstream infections. Compared to mice treated with anidulafungin, infected mice treated with the new drug had significant reductions in kidney, lung, and brain fungal burden two days post-treatment. The results suggest the new drug could help treat even the most invasive infections.

According to Ghannoum, the most exciting element of the study is that it brings a promising antifungal one step closer to patients. It helps lay the foundation for phase 1 clinical trials that study low levels of the drug in healthy adults and test for any potential safety concerns. There is an urgent need for such studies, as C. auris infection has become a serious threat to healthcare facilities worldwide—and drug-resistance is rising.

"Limited treatment options calls for the development of new drugs that are effective against this devastating infection," Ghannoum said. "We hope that we contributed in some way towards the development of new drugs."

Explore further: First systematic study of deadly, antibiotic-resistant fungus reported

More information: Hager, et al. "In vitro and in vivo Evaluation of the Antifungal Activity of APX001A/APX001 Against Candida auris." Antimicrobial Agents and Chemotherapy.

Related Stories

First systematic study of deadly, antibiotic-resistant fungus reported

February 24, 2017
The deadly fungus, Candida auris, which has been found in hospitals, is resistant to entire classes of antimicrobial drugs, limiting treatment options for those infected. First reported in 2009, the fungus has been linked ...

Fungal disease spreads through UK hospitals – here's what you need to know about _Candida auris_

August 18, 2017
At least 20 NHS Trust hospitals have been hit by a drug-resistant fungus, Candida auris. So far, 200 people have been contaminated or infected with the fungus, which can cause potentially deadly complications.

First 13 cases of deadly fungal infection emerge in US

November 4, 2016
Thirteen cases of a sometimes deadly and often drug-resistant fungal infection, Candida auris, have been reported in the United States for the first time, health officials said Friday.

Fungus causing fatal infections in hospitalized patients has unique growth patterns

August 17, 2016
The multidrug-resistant yeast Candida auris, which has caused fatal infections in some hospitalized patients, has at least two different growth patterns and some of its strains are as capable of causing disease as the most ...

Researchers help develop new antifungal drug

October 6, 2017
University of Liverpool researchers, working with F2G Limited (Eccles, Manchester), have developed a new antifungal drug to help in the treatment of life threatening invasive fungal infections such as invasive aspergillosis.

Recommended for you

A multimodal intervention to reduce one of the most common healthcare-acquired infections

March 16, 2018
Surgical site infections are the most frequent health care-associated infections in developing countries. According to the World Health Organization (WHO), this type of infection can affect up to one-third of surgical patients ...

New imaging approach offers unprecedented views of staph infection

March 14, 2018
Eric Skaar, PhD, MPH, marvels at the images on his computer screen—3-D molecular-level views of infection in a mouse. "I'm pretty convinced that these are the most advanced images in infection biology," said Skaar, Ernest ...

Parasitic worms need their intestinal microflora too

March 14, 2018
Scientists at The University of Manchester have cast new light on a little understood group of worm infections, which collectively afflicts 1 in 4 people, mainly children—in the developing the world.

Compound scores key win in battle against antibiotic resistance

March 14, 2018
Researchers at Oregon State University have made a key advance in the fight against drug resistance, crafting a compound that genetically neutralizes a widespread bacterial pathogen's ability to thwart antibiotics.

Helicobacter creates immune system blind spot

March 13, 2018
The gastric bacterium H. pylori colonizes the stomachs of around half the human population and can lead to the development of gastric cancer. It is usually acquired in childhood and persists life-long, despite a strong inflammatory ...

Taking the jab (and the chill) out of vaccination

March 13, 2018
Scientists in Cairns (Australia) and Cardiff (Wales) have taken an important first step towards solving two problems that hinder access to vaccines: they need to be kept cool, and no one likes needles.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.