Researchers develop approach for identifying tumor targets when genetic drivers are unknown

January 5, 2018, Baylor College of Medicine

Ependymoma is a type of brain tumor that is resistant to chemotherapy. While genomic sequencing has provided molecular targets and resulted in precision oncology therapies for many cancers, effective targets for ependymomas have remained elusive. Dr. Stephen Mack, assistant professor of pediatrics – oncology and new faculty member at Baylor College of Medicine and Texas Children's Hospital, and colleagues have developed a framework for discovering targets in ependymomas, and other cancer that lack known genetic drivers, thereby also providing insights into treatment strategies. The study appears in Nature.

"Ependymoma is the third most common cancer type in children, and there are no current targeted therapies available. Even with surgery and radiation, the more aggressive tumors will keep coming back," said Mack. "Traditional genomic sequencing revealed that these tumors are relatively silent, meaning mutations in the DNA are few. However, we found changes in the way the DNA is folded and packed and how the genes are regulated."

The research team developed a more in depth approach to find the actively transcribed genes that play a role in formation, as opposed to identifying mutations alone. A specific process in the tumor's epigenome, called histone acetylation, tells genes to turn on or off, thereby regulating the action of the DNA. The team assayed the markers for this process in the ependymoma tumor type and found that the are highly active in tumor development.

"This is an important strategy to develop because we are looking at gene regulation specifically as a new approach to targeted therapy for cancers in which there are no known ," said Mack. "It can act as a complimentary tool to to identify potential targets, and could later be useful in developing drug treatment plans."

"As a neurosurgeon, it is very frustrating to operate on babies with , and then not have any effective chemotherapy. This new approach to finding effective chemotherapies discovered by Dr. Mack offers a new way forward in this very difficult disease that affects the youngest members of our society," said Dr. Michael Taylor, neurosurgeon and senior scientist in the Program in Stem Cell and Developmental Biology at the Hospital for Sick Children in Toronto.

Explore further: Molecular super enhancers: A new key for targeted therapy of brain cancer in children

More information: Stephen C. Mack et al. Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling, Nature (2017). DOI: 10.1038/nature25169

Related Stories

Molecular super enhancers: A new key for targeted therapy of brain cancer in children

December 20, 2017
Ependymoma refers to a heterogeneous group of cancers that can occur at any age, and is one of the most common types of brain cancer in children. The genetic causes for its development are largely unknown and there are no ...

Brain tumors found to have a two-tier system

August 23, 2011
Ependymomas are the second most frequent type of malignant brain tumor in children. Ependymoma develops from precursor cells of the tissue that lines the hollow cavities of the brain. Therapy results of ependymoma vary immensely: ...

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

New study shows that genomic profiling can help improve treatment of brain tumors in children

September 14, 2017
The largest genomic profiling study ever conducted into a type of brain tumor known as glioma in children has identified genetic alterations in 96% of cases. As reported in The Oncologist, this genetic information could help ...

Genetic testing for childhood cancer patients can identify cause and treatment potential

January 28, 2016
Combined whole exome tumor and blood sequencing in pediatric cancer patients revealed mutations that could help explain the cause of cancer or have the potential to impact clinical cancer care in 40 percent of patients in ...

Comprehensive sequencing program shows promise of precision medicine for advanced cancer

August 2, 2017
The average metastatic cancer has more genetic mutations than are seen in early stage tumors, a new study finds.

Recommended for you

Researchers find adult stem cell characteristics in aggressive cancers from different tissues

September 19, 2018
UCLA researchers have discovered genetic similarities between the adult stem cells responsible for maintaining and repairing epithelial tissues—which line all of the organs and cavities inside the body—and the cells that ...

Ketogenic diet reduces body fat in women with ovarian or endometrial cancer

September 19, 2018
Women with ovarian or endometrial cancer who followed the ketogenic diet for 12 weeks lost more body fat and had lower insulin levels compared to those who followed the low-fat diet recommended by the American Cancer Society, ...

Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort

September 18, 2018
The consumption of foods with higher scores on the British Food Standards Agency nutrient profiling system (FSAm-NPS), reflecting a lower nutritional quality, is associated with an increased risk of developing cancer, according ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

CRISPR screen reveals new targets in more than half of all squamous cell carcinomas

September 18, 2018
A little p63 goes a long way in embryonic development—and flaws in p63 can result in birth defects like cleft palette, fused fingers or even missing limbs. But once this early work is done, p63 goes silent, sitting quietly ...

Enlarged genotype-phenotype correlation for a three-base pair deletion in neurofibromatosis type 1

September 18, 2018
International collaborative research led by Ludwine Messiaen, Ph.D., shows that while a three-base pair, in-frame deletion called p.Met992del in the NF1 gene has a mild phenotype for people with the genetic disorder neurofibromatosis ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.