Brain's insular cortex mediates approach and avoidance responses to others in distress

January 31, 2018, Boston College
Experiments with adult and juvenile rats, pictured here, confirmed the insular cortex, an information-processing region of the brain in humans as well, is central to reactions like approach or avoidance of others, a team of Boston College neuroscience researchers has found. Credit: John P. Christianson, Boston College

The brain's insular cortex, which processes senses and emotions, controls reactions like approach to or avoidance of others through the action of the hormone oxytocin, a team of Boston College researchers reports in the latest edition of the journal Nature Neuroscience.

Searching for clues to complex human social behaviors, the team developed a procedure in which laboratory rats - much like humans - prefer to approach distressed juveniles but avoid distressed adults - responses known as social affective behaviors, according to the article titled "Insular mediates approach and avoidance responses to others in distress."

The experiments demonstrate how the brain's region is required for proper reactions to others in distress. Further, the release of oxytocin results in changes in insular cortex excitability and likely accounts for the social affective behaviors, according to the team, led by Boston College Gianinno Family Sesquicentennial Assistant Professor of Psychology John P. Christianson.

The team's experiments provide a new model to investigate brain function during emotion recognition and empathy tasks. The model expands the research toolkit for investigations of social behaviors and psychiatric diseases like autism and schizophrenia. The findings point specifically to the insular cortex and oxytocin reception as key to social responses.

The overarching goal of the research initiative is to uncover the neural circuitry that allows animals to recognize the emotional states of other animals and generate appropriate reactions, Christianson said.

"We were surprised that insular cortex activity was correlated with both social approach and social avoidance behaviors," said Christianson. "This suggests that the insular cortex works together with a distributed network to integrate features like the age and stress of other individuals." 

Understanding the wiring of the social brain is relevant to many social settings, Christianson said. As an example, he said, when an individual encounters someone else in distress, there are a number of possible reactions - to help the other, to flee, to seek help or warn others of potential danger.

"What an individual chooses to do in such a situation depends on a number of factors including the relationship between interactants, their ages, safety in the environment, and intrinsic empathic capacities," said Christianson. "The social cognition underlying these decisions is critical for cooperation, trust, helping and intimacy."

Christianson said his team uses neuroscience techniques "to investigate the biological basis for social cognition with the hope that we can better understand and treat people with conditions marked by aberrant social cognition such as autism or schizophrenia."

The research was funded by the National Science Foundation, the National Institutes of Mental Health and the Brain and Behavior Foundation. In addition to Christianson, the article was co-authored by BC Assistant Professor of Psychology Maureen Ritchey, doctoral student and NSF Graduate Research Fellow Morgan M. Rogers-Carter, Research Associate Juan A. Varela, and undergraduate students Katherine B. Gribbons, Anne F. Pierce, and Morgan T. McGoey.

Christianson said the findings set the stage for a large-scale investigation of the brain circuits that work together to orchestrate responses to social emotional information with the hope that such research will lead to better treatment for people with conditions marked by aberrant social cognition, such as autism or schizophrenia.

Specifically, the Christianson lab will investigate brain regions that receive input from the insular cortex to determine whether these pathways are necessary for interactions with stressed individuals. 

Explore further: Social phobia linked to autism and schizophrenia

More information: Morgan M. Rogers-Carter et al, Insular cortex mediates approach and avoidance responses to social affective stimuli, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0071-y

Related Stories

Social phobia linked to autism and schizophrenia

December 11, 2017
New Swinburne research shows that people who find social situations difficult tend to have similar brain responses to those with schizophrenia or autism.

Salience network is linked to brain disorders

December 5, 2014
How does the brain determine what matters? According to a new scientific article, a brain structure called the insula is essential for selecting things out of the environment that are "salient" for an individual, and dysfunction ...

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

'Disgusted' rats teaching scientists about nausea, work may lead to new cancer treatments

October 5, 2012
Nausea is a common and distressing side effect of many drugs and treatments. Unlike vomiting, nausea is not well understood, but new research by University of Guelph scientists may soon change that.

Study identifies brain circuit controlling social behavior

January 11, 2018
A new study by researchers at Roche in Basel, Switzerland has identified a key brain region of the neural circuit that controls social behavior. Increasing the activity of this region, called the habenula, led to social problems ...

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

Recommended for you

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

Research reveals that what we see is not always what we get

August 15, 2018
Researchers are helping to explain why some people anticipate and react to fast-moving objects much quicker than others.

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

Scientists pinpoint brain networks responsible for naming objects

August 14, 2018
Scientists at The University of Texas Health Science Center at Houston (UTHealth) have identified the brain networks that allow you to think of an object name and then verbalize that thought. The study appeared in the July ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.