Cellular traffic jam seen in ALS/FTD—Supports drug strategy

January 8, 2018, Emory University
An MRI with increased signal in the posterior part of the internal capsule which can be tracked to the motor cortex consistent with the diagnosis of ALS. Credit: Frank Gaillard/Wikipedia

A cellular traffic jam appears to affect neurons in most forms of ALS (amyotrophic lateral sclerosis), researchers at Emory University School of Medicine and Mayo Clinic, Jacksonville have shown.

The results are scheduled for publication in Nature Neuroscience.

ALS research had already identified nuclear transport problems in the most common inherited form of the neurodegenerative disease, caused by mutations in the gene C9orf72. Just a minority of ALS cases can be blamed on inherited mutations; most are sporadic, thought to come from a combination of genetic and environmental factors. The findings suggest that a drug strategy aimed at easing the traffic jam may be generalizable to sporadic and at least some familial types of ALS.

The project began with an investigation of a protein called TDP-43, a "bad actor" in both ALS and FTD (), says senior author Wilfried Rossoll, PhD, previously at Emory and now assistant professor of neuroscience at the Mayo Clinic in Jacksonville.

TDP-43 was considered a "victim" of transport defects in the C9orf72 form of ALS, Rossoll says. TDP-43 is normally found in the nucleus. In ALS-affected neurons, truncated forms of TDP-43 aggregate into clumps that are found in the cytoplasm.

"We show that TDP-43 is also a 'perpetrator', in that it can cause transport defects on its own in most ALS cases, and potentially other neurodegenerative diseases with TDP-43 pathology, such as frontotemporal dementia," he says.

Rossoll and his team wanted to figure out how TDP-43 aggregates inflict damage upon neurons. However, these aggregates are difficult to analyze since they are insoluble. The scientists used a technique akin to the way banks attempt to foil robbers by loading dye packs, ready to burst, into stacks of cash.

Yi Zhang, an exchange student at Emory from China, grafted an enzyme onto TDP-43 that slaps a tag onto everything nearby in live cells. Working with Nick Seyfried, PhD, assistant professor of biochemistry and neurology and director of the Emory Integrated Proteomics Core, Zhang was able to isolate and identify the tagged proteins.

In neurons in which the TDP-43 fragment was aggregating and making them sick, the enzyme tagged several gatekeeper proteins, components of the nuclear pore, which are critical for moving traffic in and out of the nucleus. When TDP-43 clumps together, so do the nuclear pore proteins.

Ching-Chieh (Ian) Chou, PhD, a former Emory graduate student and now a postdoc at Stanford, is the lead author on this study. He found that the clumping alters the shape of the nuclear membrane and the nuclear pores, and thus disrupts the import of proteins into the nucleus and export of RNA out of it. The Emory/Mayo team found alterations in nuclear structure in skin cells obtained from ALS patients by Chad Hales, MD, PhD, assistant professor of neurology - both C9orf72 forms and others. They saw similar problems in neurons generated from patients' induced stem cells..

In post-mortem brain tissue from ALS patients, the researchers could also see clumps of nuclear pore proteins. Significantly, these were visible in sporadic ALS cases as well as those driven by mutations in C9orf72 or TDP-43. This research was conducted with Jonathan Glass, MD, professor of neurology and director of Emory ALS Center.

"TDP43 pathology is seen in about 98 percent of ALS cases and about 50 percent of FTD cases, and our work supports the now accepted conclusion that nucleopore abnormalities are not restricted to C9orf72 expansion mutations," Glass says. "Confirming the in vitro data in human brain tissue was very important, making the findings that much more relevant."

He adds that there is still a chicken-or-egg question surrounding TDP-43 aggregation and the nuclear pore abnormalities.

Forcing cultured neurons to produce aggregation-prone TDP-43 fragments is toxic. But the Emory/Mayo team showed that a drug that clamps down on some nuclear transport routes can blunt the toxic effects in culture. The drug, called KPT-335 or verdinexor and made by Karyopharm Therapeutics, inhibits nuclear export. KPT-335 may compensate for disrupted protein import, and also may prevent too much TDP-43 from accumulating outside the nucleus, Rossoll says. Drugs similar to KPT-335 have shown beneficial effects in animal models of the C9orf72 form of ALS, and this class of drugs is headed for clinical studies.

Explore further: Uncovering a key relationship in ALS

More information: Ching-Chieh Chou et al, TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD, Nature Neuroscience (2018). DOI: 10.1038/s41593-017-0047-3

Related Stories

Uncovering a key relationship in ALS

July 15, 2015
A University of Toronto research team has discovered new details about a key gene involved in ALS, perhaps humanity's most puzzling, intractable disease.

In Huntington's disease, traffic jams in the cell's control center kill brain cells

May 4, 2017
Working with mouse, fly and human cells and tissue, Johns Hopkins researchers report new evidence that disruptions in the movement of cellular materials in and out of a cell's control center—the nucleus—appear to be a ...

'RNA sponge' mechanism may cause ALS/FTD neurodegeneration

April 1, 2013
The most common genetic cause of both ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia) was recently identified as an alteration in the gene C9orf72. But how the mutation causes neurodegenerative disease ...

Important role of nucleocytoplasmic transport in amyotrophic lateral sclerosis and frontotemporal dementia

February 12, 2016
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating adult-onset neurodegenerative disorders. No cure exists for these diseases. Ten percent of ALS patients suffer from a familial form ...

Scientists show 'matchmaker' role for protein behind SMA

February 14, 2017
A puzzling question has lurked behind SMA (spinal muscular atrophy), the leading genetic cause of death in infants.

Researchers reveal how a common mutation causes neurodegenerative disease

August 26, 2015
Researchers have determined how the most common gene mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) disrupts normal cell function, providing insight likely to advance efforts to develop ...

Recommended for you

Environmental factors may trigger onset of multiple sclerosis

October 16, 2018
A new Tel Aviv University study finds that certain environmental conditions may precipitate structural changes that take place in myelin sheaths in the onset of multiple sclerosis (MS). Myelin sheaths are the "insulating ...

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

Scientists examine how neuropathic pain responds to Metformin

October 15, 2018
Scientists seeking an effective treatment for one type of chronic pain believe a ubiquitous, generic diabetes medication might solve both the discomfort and the mental deficits that go with the pain.

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Abnormal vision in childhood can affect brain functions

October 13, 2018
A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

Study: Ketogenic diet appears to prevent cognitive decline in mice

October 12, 2018
We've all experienced a "gut feeling"—when we know deep down inside that something is true. That phenomenon and others (like "butterflies in the stomach") aptly describe what scientists have now demonstrated: that the gut ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.