Identical twins can share more than identical genes

January 9, 2018, Baylor College of Medicine
Credit: CC0 Public Domain

An international group of researchers has discovered a new phenomenon that occurs in identical twins: independent of their identical genes, they share an additional level of molecular similarity that influences their biological characteristics. The researchers propose a mechanism to explain the extra level of similarity and show that it is associated with risk of cancer in adulthood. The results appear in the journal Genome Biology.

"The characteristics of an individual depend not only on inherited from the parents but also on epigenetics, which refers to molecular mechanisms that determine which genes will be turned on or off in different cell types. If we view one's DNA as the computer hardware, epigenetics is the software that determines what the computer can do," said senior author Dr. Robert A. Waterland, associate professor of pediatrics - nutrition at the USDA/ARS Children's Nutrition Research Center and Texas Children's Hospital and of molecular and human genetics at Baylor College of Medicine.

Epigenetics works by adding or removing chemical tags to genes to mark which ones should be used in different cell types. One of the better studied tags, known to play an important role in development and , is the methyl chemical group. Here, in a large group of identical and fraternal twin pairs, Waterland and his colleagues studied a group of genes called metastable epialleles. Previous work indicated that methyl tags are randomly added to metastable epialleles during early embryonic development and maintained throughout life.

"We expected that the patterns of methyl tags added to metastable epialleles would be equally random in identical twins and fraternal twins," Waterland said. "Instead, we found that the methylation patterns matched almost perfectly in identical twins, a degree of similarity that could not be explained by the twins sharing the same DNA. We call this phenomenon 'epigenetic supersimilarity.'"

Identical twins are formed when the very early embryo - essentially a ball of cells - splits into two parts, and each continues to develop into a separate human being. The authors proposed and tested a simple model to explain epigenetic supersimilarity.

"If, in this group of genes, the epigenetic markers are established before the embryo splits into two, then the markers will be the same in both twins," Waterland said. "In essence, both twins inherit an intimate molecular memory of their shared developmental legacy as a single individual. On the other hand, genes at which epigenetic markers are set after the embryo splits can have greater epigenetic differences between the two twins."

Cancer connection

Epigenetic supersimilarity seems to occur in a relatively small group of genes, but, as the researchers discovered, many of these are associated with cancer. To test whether these epigenetic markers might affect risk of cancer, the scientists in Houston teamed up with cancer epidemiologists running the Cancer Council Victoria's Melbourne Collaborative Cohort Study in Melbourne, Australia. Back in the 1990s, this large study was set up to assess different risk factors for cancer.

"By analyzing peripheral blood DNA samples from healthy adults in our study, we have been able to show that methylation at epigenetically supersimilar genes is associated with risk of subsequently developing several types of cancer, including lung, prostate and colorectal cancer," said Dr. Roger Milne, associate professor and head of Cancer Epidemiology at Cancer Council Victoria, and an author on the study.

This study shows that, at the epigenetic level, identical twins are more similar to each other than previously recognized.

"Our findings should prompt a re-evaluation of previous genetic studies on twins," Waterland said. "For decades, researchers have studied genetically to estimate what proportion of disease risk is determined by one's genes. To the extent that epigenetic supersimilarity affects risk of disease, as our results indicate, genetic risk estimates based on twin studies have been inflated."

Explore further: Immune diseases inflict identical twins differently

More information: Timothy E. Van Baak et al, Epigenetic supersimilarity of monozygotic twin pairs, Genome Biology (2018). DOI: 10.1186/s13059-017-1374-0

Related Stories

Immune diseases inflict identical twins differently

December 13, 2017
Any parent with identical twins knows their two children are actually remarkably different. Identical twins are genetically identical, but they are not identical in gene expressions, a difference attributable to epigenetics. ...

An epigenetic difference in twins explains different risk of breast cancer

October 17, 2012
Monozygotic twins have the same genome, that is, the same DNA molecule in both siblings. Despite being genetically identical, both twins may have different diseases at different times. This phenomenon is called "twin discordance". ...

Study shows our epigenetics change rapidly in first year of life

May 27, 2013
(Medical Xpress)—The way our genes are activated changes rapidly when we are infants, a new study of twins at the Murdoch Childrens Research Institute has found.

New twin study sheds light on what causes reprogrammed stem cells to have different epigenetic patterns

April 19, 2017
Salk scientists and collaborators have shed light on a long-standing question about what leads to variation in stem cells by comparing induced pluripotent stem cells (iPSCs) derived from identical twins. Even iPSCs made from ...

Differences between human twins at birth highlight importance of intrauterine environment

July 15, 2012
Your genes determine much about you, but environment can have a strong influence on your genes even before birth, with consequences that can last a lifetime. In a study published online in Genome Research, researchers have ...

Recommended for you

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Study: DNA websites cast broad net for identifying people

October 11, 2018
About 60 percent of the U.S. population with European heritage may be identifiable from their DNA by searching consumer websites, even if they've never made their own genetic information available, a study estimates.

First two papers based on studies using full set of data in the UK Biobank published

October 11, 2018
Two teams of researchers have independently published papers describing research conducted using the full set of data in the UK Biobank—both in the journal Nature. The first team comprised researchers from the U.K., Australia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.