New long-acting approach for malaria therapy developed

January 22, 2018, University of Liverpool
New long-acting approach for malaria therapy developed
Malaria blood parasite. Credit: University of Liverpool

A new study, published in Nature Communications, conducted by the University of Liverpool and the Johns Hopkins University School of Medicine highlights a new 'long acting' medicine for the prevention of malaria.

Every year, malaria afflicts hundreds of millions of people and kills hundreds of thousands of children. Despite considerable success in reducing the worldwide prevalence of malaria, its incidence in visitors to endemic areas has continued to rise steadily.

Currently, the best available prevention of malaria requires oral dosing of antimalarial tablets. Chronic oral dosing of these medicines has significant complications because healthy people need to strictly adhere to the medication in order for effective prophylaxis to occur.

Nanotechnology

The study, led by Pharmacologist Professor Andrew Owen and Materials Chemist Professor Steve Rannard, aimed to utilise nanotechnology to improve the delivery of an existing antimalarial via a novel injectable format that can maintain blood concentration of the drug for weeks or months following a single dose.

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the diagnosis, prevention or treatment of disease in the human body.

Solid Drug Nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug exposure and improve the treatment or prevention of several diseases, including HIV and malaria.

Long-acting injectible

The Liverpool team have previously shown SDNs to be effective for oral delivery of drugs, but this is the first time they have shown benefits for a long-acting injectable (LAI) format. These particles have an approximate diameter that is 1/500th the width of a human hair, and once injected into the muscle, establish a drug depot that releases drug into the bloodstream over an extended period of time.

Through the use of this technology the trans-Atlantic research team developed an LAI version of a daily anti-malarial tablet (atovaquone) which provided prophylactic blood concentrations in mice for a period of 28 days. Moreover, mice injected with the nanomedicine were completely protected from the when exposed during this time, and since mice eliminate the drug much more rapidly in humans, a much longer duration of protection might be expected in people.

Impacting large numbers

Professoor Rannard, said: "Although anti-malaria drugs exist they require individuals to take medication daily. Chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to preventative therapies.

"Our research seeks to remove the need for daily tablets and generate long-acting dosing technologies that may be able to provide therapeutic drug concentrations for months after a single administration. This would provide a clinically-relevant intervention that could readily impact large numbers of people and significantly prevent the transmission of malaria."

Professor Owen, added "The ability of this nanomedicine to protect from infection by malaria may provide an additional tool in the global arsenal used to combat malaria in non-immune travellers and ultimately people who live in endemic areas of the world. Since atovaquone is already licenced for use in humans and the nanomedicine contains ingredients already used in other medicines, it could be enter clinical trials within a very short timescale"

"If other drugs can be manufactured in this way, in the longer term there is also potential for a long-acting combination therapy for ."

Explore further: New nanomedicine approach aims to improve HIV drug therapies

More information: Rahul P. Bakshi et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis, Nature Communications (2018). DOI: 10.1038/s41467-017-02603-z

Related Stories

New nanomedicine approach aims to improve HIV drug therapies

October 21, 2016
New research led by the University of Liverpool aims to improve the administration and availability of drug therapies to HIV patients through the use of nanotechnology.

Experts discover ways to tackle drug resistant parasites that cause the killer disease malaria

December 11, 2017
A new analysis of all relevant previously published clinical data shows how parasites causing malaria become resistant to a commonly used treatment for malaria in travelers.

Phase II trials underway for new single dose malaria treatment

August 11, 2015
Early research on a new malaria drug shows potential for a single dose treatment of the disease. The new drug, which prevents the malaria parasite from reproducing and spreading, is now undergoing Phase II clinical trials ...

Less effective antimalarial therapies can help fight malaria better

November 12, 2015
Oxford University scientists have found that the more effective way to beat malaria is to use less effective drugs some of the time.

Recommended for you

Marker may help target treatments for Crohn's patients

October 16, 2018
Crohn's disease (CD), a chronic inflammatory condition of the intestinal tract, has emerged as a global disease, with rates steadily increasing over the last 50 years. Experts have long suspected that CD likely represents ...

Polio: Environmental monitoring will be key as world reaches global eradication

October 15, 2018
Robust environmental monitoring should be used as the world approaches global eradication of polio, say University of Michigan researchers who recently studied the epidemiology of the 2013 silent polio outbreak in Rahat, ...

Study traces hospital-acquired bloodstream infections to patients' own bodies

October 15, 2018
The most common source of a bloodstream infection acquired during a hospital stay is not a nurse's or doctor's dirty hands, or another patient's sneeze or visitor's cough, but the patient's own gut, Stanford University School ...

Researchers make essential imaging tests safer for people at risk of acute kidney injury

October 15, 2018
Every year, millions of people undergo medical tests and procedures, such as coronary angiography, which use intravascular contrast dyes. "For the majority of patients, these are safe and necessary procedures. However, about ...

Do not give decongestants to young children for common cold symptoms, say experts

October 11, 2018
Decongestants should not be given to children under 6—and given with caution in children under 12—as there is no evidence that they alleviate symptoms such as a blocked or runny nose, and their safety is unclear, say ...

New techniques can detect Lyme disease weeks before current tests

October 11, 2018
Researchers have developed techniques to detect Lyme disease bacteria weeks sooner than current tests, allowing patients to start treatment earlier.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

topaq
not rated yet Jan 22, 2018
If only the dose was reasonable for a practical human injection. 200 mg/kg dose would mean 15 grams of drug to be injected. At the 100 mg/ml concentration used for the mice study this would be a 150 ml injection, or 30 x 5 ml intramuscular injection

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.