Network model of the musculoskeletal system predicts compensatory injuries

January 18, 2018, Public Library of Science
Researchers have converted the entire body's network of bones and muscles into a comprehensive mathematical model. Credit: Brittany Bennet

While detailed anatomical studies of the musculoskeletal system have existed since the days of Leonardo da Vinci, new research led by Danielle Bassett at The University of Pennsylvania's School of Engineering and Applied Science is the first to convert the entire body's network of bones and muscles into a comprehensive mathematical model. A study of the network is publishing on January 18 in the open access journal PLOS Biology.

Network science examines how the actions of a system's individual parts affect the behavior of the system as a whole. Some commonly studied networks include computer chip components and social media users, but University of Pennsylvania engineers are now applying to a much older system: the human body.

Although the authors' network model simplifies matters by treating bones as "balls" and muscles as "springs," it can nevertheless provide sharper insight into how an injury in one part of the body can lead to increased strain on another.

The authors say that as the model becomes more realistic and tailored to individuals, it could help clinicians and physical therapists predict compensatory injuries and suggest ways of avoiding them.

"People who study biomechanics tend to focus on a single part of the body—the shoulder, the wrist, or the knee," Bassett said. "Because that knowledge is so localized, they don't have a way of connecting it to the rest of the body or to think about compensatory injuries that are far away.

"We actually had to go back to 'Gray's Anatomy' type texts. It was a long, painstaking effort figuring out which bone connects to which and collating that data into a full network."

Even in its highly abstract form, this network provides a picture of how forces are transmitted throughout the musculoskeletal system.

"We can say, 'if this is the muscle you injured, here are the other muscles we should be most worried about,'" Bassett said.

The researchers also compared their network to the "motor homunculus," a way of mapping specific brain regions to the parts of the body they control.

"We saw that the more impact that a muscle has on the rest of the body, the more real estate we use in our brain to control it," Bassett said. "We think it's a way for us to maintain robustness in those muscles—if a muscle can have a massive impact on the rest of the you don't want any error in controlling it."

Future work will refine the , adding more realistic masses for individual bones and stretchiness for . The modeling of tendons, and muscles that have more complicated flexing behaviors, will also be improved.

Explore further: Study uncovers potential key to preventing back pain in runners

More information: Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, et al. (2018) Structure, function, and control of the human musculoskeletal network. PLoS Biol 16(1): e2002811. doi.org/10.1371/journal.pbio.2002811

Related Stories

Study uncovers potential key to preventing back pain in runners

January 3, 2018
A new study from The Ohio State University Wexner Medical Center examines what may cause chronic back pain in runners and the exercises to help prevent it.

Achilles is more than just one tendon

November 20, 2017
The Achilles tendon is the strongest tendon in the human body. It can bear loads exceeding over 900 kilograms during running. Despite its strength, it is prone to injuries and it is not yet well known what factors predict ...

Scleraxis found vital for knitting muscles and bones together

September 8, 2017
In vertebrates, bodily support and movement requires bones and muscles. Muscles pull and push, contract and relax - and bones respond accordingly. Taken together they form the musculoskeletal system.

Researchers discover fundamental rules for how the brain controls movement

October 24, 2017
The human brain is a mysterious supercomputer. Billions of neurons buzz within an intricate network that controls our every thought, feeling, and movement. And we've only just begun to understand how it all works.

Which stretches to do, avoid

October 27, 2017
Dear Mayo Clinic: I recently started jogging for exercise. I have been stretching before each run, but I've heard that some stretches increase your risk of injury. Which stretches should I do, and which should I avoid?

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.