Research compares neural activity in children with and without autism spectrum disorder

January 29, 2018, University of California - Riverside
Credit: CC0 Public Domain

Pick a hand, any hand. That familiar refrain, repeated in schoolyards the world over, is the basis of a simple guessing game that was recently adapted to study how and why kids with autism spectrum disorder (ASD) interact with the people around them.

The game is the brainchild of Katherine Stavropoulos, an assistant professor of special education in the Graduate School of Education at the University of California, Riverside. As a licensed clinical psychologist with a background in neuroscience, Stavropoulos looks closely at electrical activity in the brains of children with ASD and typical development, or TD, to discern differences in the respective groups' reward systems.

Historically, clinicians and scientists have proposed a variety of theories to explain why kids with ASD tend to be less socially communicative than their TD peers. One popular theory, the social motivation hypothesis, suggests that kids with ASD aren't intrinsically motivated to interact with other people because they aren't neurologically "rewarded" by social interactions the same way TD kids are.

"Most of us get a hit of dopamine when we interact with other people, whether it's through making eye contact or sharing something good that's happened to us—it feels good to be social," Stavropoulos said. "The social motivation hypothesis says kids with autism don't get that same reward from , so they don't go out of their way to engage with people because it's not rewarding for them."

A second theory, sensory over-responsivity—also known as the overly intense world hypothesis—posits that because kids with ASD interpret sensory cues more intensely than their TD peers, those with ASD tend to shy away from interactions they perceive as overwhelming or aversive.

"Kids with autism often find noises too loud or lights too bright, or they find them not intense enough," Stavropoulos said. "Most of us wouldn't want to talk to someone whom we perceive as screaming, especially in a room that was already too bright, with ambient noise that was already too loud." Instead, sensory over-responsivity argues, such interactions compel many individuals with ASD to withdraw from socialization as a self-soothing behavior.

But according to Stavropoulos, who also serves as assistant director of UCR's SEARCH Family Autism Resource Center, it may be possible for these seemingly competing theories to exist in tandem.

Stavropoulos and UC San Diego's Leslie Carver, her research colleague and former graduate advisor, used electrophysiology to study the neural activity of 43 children between the ages of 7 and 10—23 of whom were TD and 20 of whom had ASD—during a guessing game-style simulation that provided participants with both social and nonsocial rewards. Their results, published this week in the journal Molecular Autism, provide a glimpse at the brain mechanisms behind autism.

Wearing a cap outfitted with 33 electrodes, each child sat before a computer screen showing pairs of boxes containing question marks. Much like the format of the "pick a hand" guessing game, the child then chose the box he or she thought was the "right" one (in reality, the answers were randomized).

Stavropoulos said it was crucial to design a simulation that would allow the researchers to study participants' neural reactions to social and nonsocial rewards during two stages: reward anticipation, or the period before the child knew whether he or she had chosen the correct answer, and , or the period immediately after.

"We structured the game so that the kids would pick an answer, and then there would be a brief pause," Stavropoulos said. "It was during that pause that the kids would begin to wonder, 'Did I get it?' and we could observe them getting excited; the more rewarding something is to a person, the more that anticipation builds."

Each participant played the game in two blocks. During the social block, kids who chose the right box saw a smiling face and kids who chose the wrong box saw a sad, frowning face. During the nonsocial block, meanwhile, the faces were scrambled and reformed in the shapes of arrows pointing up to denote correct answers and down to denote incorrect ones.

"After the kids saw whether they were right or wrong, we were then able to observe the post-stimulus reward-related activity," Stavropoulos said of the process, which involved comparing participants' neural oscillation patterns. The researchers gleaned several key findings from the simulation:

  • TD kids anticipated social awards—in this case, the pictures of faces—more strongly than kids with ASD.
  • Not only did children with ASD anticipate social rewards less than their TD peers, but within the ASD group, the researchers found that kids with more severe ASD were anticipating the nonsocial rewards, or the arrows, the most.
  • During reward processing, or the period after participants learned whether they had chosen the right or wrong box, the researchers observed more reward-related brain activity in TD children but more attention-related brain activity among children with ASD, which Stavropoulos said may be related to feelings of sensory overload in kids with ASD.
  • Among the autism group, meanwhile, kids with more severe ASD also showed heightened responsiveness to positive social feedback, which Stavropoulos said may indicate hyperactivity, or the state of being overwhelmed by "correct" social feedback that is commonly associated with sensory over-responsivity.

Stavropoulos said the duo's results provide support for both the social motivation hypothesis and the overly intense world hypothesis.

"Kids with autism might not be as rewarded by social interactions as typically developing kids are, but that doesn't mean their reward systems are entirely broken," she added. "This research makes the case for developing clinical interventions that help children with autism better understand the value of other people—to slowly teach these kids that interacting with others can be rewarding.

"But, it is critical to do this while being sensitive to these kids' sensory experiences," she continued. "We don't want to overwhelm them, or make them feel sensory overload. It's a delicate balance between making social interactions rewarding while being aware of how loudly we speak, how excited our voices sound, and how bright the lights are."

Explore further: Study probes why kids with autism are oversensitive to touch, noise

Related Stories

Study probes why kids with autism are oversensitive to touch, noise

May 14, 2014
(HealthDay)—Certain areas in the brains of children with autism overreact to sensory stimuli, such as the touch of a scratchy sweater and loud traffic noises, a new small study shows.

'Integrated Play Groups' help children with autism

October 27, 2014
It's an often-agonizing challenge facing any parent of a child with autism: How can I help my son or daughter socialize with his or her typically developing peers? The solution, SF State's Pamela Wolfberg found, may lie in ...

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

Children with autism who live with pets are more assertive

December 30, 2014
Dogs and other pets play an important role in individuals' social lives, and they can act as catalysts for social interaction, previous research has shown. Although much media attention has focused on how dogs can improve ...

Therapy for kids with autism pays off for moms, dads

August 11, 2017
(HealthDay)—Behavioral therapy for children with autism also benefits their parents, a new study finds.

Are all those 'Fidget spinners' really helping kids?

May 25, 2017
(HealthDay)—Fidget spinners may be the latest must-have kids' toy, but claims that the gizmos help students pay attention aren't backed by science, experts say.

Recommended for you

Autism's social deficits are reversed by an anti-cancer drug

March 12, 2018
Of all the challenges that come with a diagnosis of autism spectrum disorder (ASD), the social difficulties are among the most devastating. Currently, there is no treatment for this primary symptom of ASD. New research at ...

Scientists link genes to brain anatomy in autism

February 27, 2018
A team of scientists at the University of Cambridge has discovered that specific genes are linked to individual differences in brain anatomy in autistic children.

Blood and urine tests developed to indicate autism in children

February 19, 2018
New tests which can indicate autism in children have been developed by researchers at the University of Warwick.

Autism might be better detected using new two-minute questionnaire

February 5, 2018
Researchers at Rutgers New Jersey Medical School have developed a two-minute questionnaire for parents that could help pediatricians and other primary care providers detect autism in toddlers, at a time when intervention ...

Research compares neural activity in children with and without autism spectrum disorder

January 29, 2018
Pick a hand, any hand. That familiar refrain, repeated in schoolyards the world over, is the basis of a simple guessing game that was recently adapted to study how and why kids with autism spectrum disorder (ASD) interact ...

Zebrafish study provides new insights into autism spectrum disorder research

January 24, 2018
Exposure to a compound used to treat migraines and seizures causes characteristics associated with autism, groundbreaking research with zebrafish has demonstrated.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.