Scientists discover workings of first promising Marburg virus treatment

January 10, 2018, The Scripps Research Institute
An antibody called MR191 can neutralize the deadly Marburg virus. Credit: Ollmann Saphire Lab

With a mortality rate of up to 88 percent, Marburg virus can rip through a community in days. In 2005, an outbreak of Marburg virus struck a pediatric ward in the country of Angola. With no treatment available, doctors struggled to help as the virus killed 329 of 374 infected patients.

Now, scientists at The Scripps Research Institute (TSRI) have discovered the workings of the first promising treatment for Marburg virus, a pathogen with the same pandemic potential as Ebola virus. The research builds on previous studies showing that an antibody called MR191 can neutralize Marburg—though no one knew exactly how it targeted the virus.

For the new study, TSRI scientists created a map of the virus' structure and revealed through high-resolution imaging how MR191 targets and neutralizes the virus. This antibody—or a strategy to elicit this antibody in patients—could finally give doctors a way to successfully treat the disease.

"This is the first antibody therapeutic found that could treat Marburg," says Erica Ollmann Saphire, PhD, a TSRI professor and senior author of the study, published today in the journal Cell Host & Microbe.

"With this new structure, we can start to see how this treatment works," adds Liam King, a TSRI graduate student and first author of the study. "We have also learned new things about the virus itself that could lead to new treatments and vaccines."

The scientists used a technique called x-ray crystallography and found that MR191 neutralizes the virus by mimicking the host receptor and plugging into a spot on the viral surface called the receptor binding site. With this site occupied, the virus can no longer attach itself to human cells and spread infection.

TSRI Graduate Student Liam King and Professor Erica Ollmann Saphire, PhD. Credit: Madeline McCurry-Schmidt / The Scripps Research Institute

The imaging also shows part of the architecture of a "wing" that sticks out of the side of the viral structure. The wing was particularly important for researchers to map since it appears to be one of only two known sites where protective human antibodies can bind.

As researchers draw up the battle plans against Marburg virus, they are noticing important ways Marburg differs from its close relative, Ebola virus. The new study reveals that, unlike the wing on Ebola virus, Marburg's wing folds around the outside of the glycoprotein spike.

"That finding and others in this structure tell us that Marburg is constructed differently from its cousin, the Ebola virus," says Ollmann Saphire. "That means the therapeutic strategy for one may need to be different from the other."

Another key difference: While both viruses use a structure called a glycan cap to shield the vulnerable receptor binding site from the human immune system, the new study reveals that MR191 can get around the glycan cap on Marburg virus—an ability scientists have not observed for any antibodies against Ebola .

Ollmann Saphire says the next step is to study how known mutations in Marburg evade such and to use that information to devise second-line treatments. Soon, the team hopes to see the antibody therapeutic go into clinical trials. As part of this effort, study collaborators at Vanderbilt University have licensed MR191 to a commercial partner.

Explore further: Researchers find new antibody weapons against Marburg virus

More information: "The Marburg virus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding," Cell Host & Microbe (2018).

Related Stories

Researchers find new antibody weapons against Marburg virus

June 29, 2015
A new study led by scientists at The Scripps Research Institute (TSRI) identifies new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus. The research provides ingredients needed to develop ...

Researchers inhibit Ebola virus

December 29, 2017
The incurable Ebola virus has long been feared due to its high mortality rate and danger of infection. Now researchers from the University of Copenhagen and Phillips Universität Marburg have succeeded in inhibiting the virus ...

Ebola-like Marburg virus kills two in Uganda: official

October 19, 2017
Two people have died from the Marburg virus in eastern Uganda, in the country's first outbreak of the deadly Ebola-like pathogen in three years, the health ministry said Thursday.

Uganda declares itself free of Ebola-like Marburg virus

November 11, 2014
Ugandan health officials on Tuesday declared the country free of the Ebola-like Marburg virus after completing a 42-day surveillance period under World Health Organization (WHO) rules.

Uganda Marburg virus outbreak is contained: WHO (Update)

December 8, 2017
Uganda has contained an outbreak of the Ebola-like Marburg virus weeks after it emerged, the World Health Organization said Friday, praising improved response systems since the disastrous West African Ebola epidemic.

Recommended for you

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.