Scientists reveal the structure of the zebrafish locomotor repertoire

January 5, 2018, Champalimaud Centre for the Unknown
Scientists reveal the 'Lego pieces' that form complex zebrafish movements
Examples of movements of zebrafish larvae. Each movement is represented by the tail's position through time. Colors mark the passage of time (blue at the start of the movement and red at the end). Credit: João Marques

In order to survive in a changing environment, animals and humans must integrate sensory information and their experience to select the most appropriate behavior for a given situation. This process is ultimately constrained by the range of possible motor outputs they can produce.

But two very different scenarios could be at work for constructing these movements, and this has generated some debate among experts. It might be the case that the brain can produce any arbitrary movement, or alternatively it might have to select from a predefined set of types of movements. Understanding these constraints is crucial because they reflect how the neurons in the brain that control behavior work.

Up to now, it had been difficult to experimentally disentangle the two possible motor behavior scenarios—continuous range of movements versus discrete movement components—as some behaviors may only occur under very specific conditions, or movement differences may reflect structure in the stimulus, not the motor output.

Now, in a new study, which will be published on January 22nd 2018 in the journal Current Biology, a team of neuroscientists from the Champalimaud Centre for the Unknown, in Lisbon, Portugal, analysed the movements of larvae with the help of a novel computer program to test whether the second scenario—motor behavior sequences being constructed out of "Lego pieces," as it were—actually accounted for these animals' behaviors.

"Our goal was to find, for one species, what is its repertoire of movement and how simpler movements are used in sequences to produce more complex ones," says João Marques, first author of the study.

Using a method developed in their lab for tracking the fish with very high spatial and temporal resolution as they swim, the scientists recorded millions of individual movements from thousands of individual fish during different behaviors, such as feeding or interacting with each other. "By measuring behavior across so many animals and contexts we can be confident that we sampled most of the possible types of movements these animals can execute," says Marques.

The team, led by Michael Orger, also developed a computer system that automatically—and therefore in an unbiased way—measures the behavior of zebrafish larvae in many different situations. "Since it was not known how many types of movements these animals use, and we wanted to make this judgement without imposing human biases, we created a computational algorithm that identifies movement types, and applied it to our data," Marques explains.

In this way, the team was able to reveal that zebrafish larvae use 13 different patterns of movement that they combine, when they swim, to respond to different situations. "The striking thing," adds Marques, "is that an unbiased computational approach can be used to identify different types of movements and reveal novel features of behavior that are not obvious from human observation. Much like music is made of notes, complex behaviours, such as hunting or social interactions, are formed from a small set of movements types arranged in specific sequences."

By using an objective computational method that corrected biases across conditions to score behavior, and by measuring behavior in a wide range of situations, the team found that, at least for the zebrafish larvae, behaviours are composed of a set of simple movements that are combined flexibly across different behavioural contexts.

The scientists further point out that the method they created for this study may be adapted to be used in other animal species, including humans. "This will make it possible to discover if other species also have basic sets of movements and, if that is the case, to identify their particular repertoires," says Marques.

The knowledge of the types of movements that zebrafish execute will be critical to identifying the circuits and neural mechanisms that underlie their . "Knowing the set of basic movements these animals do enables us to break down complex behaviours into easy to understand sequences of simple movements," the authors say.

Learning how these motor systems work may help guide the design of moving robots. Also, zebrafish are increasingly used as a model system to study mechanisms of neurological disease in humans. They have a brain architecture that shares many conserved features with humans and other vertebrates, and at the same time a brain that is a million times smaller, so its neural circuits are much more experimentally accessible.

Understanding how different movements are selected and executed in zebrafish and how this process is disrupted by disease can give insights into how similar processes happen in other or even humans. Ultimately, this may help to better understand and develop therapies to common neurological disorders that result from disruptions in these motor systems.

Explore further: Scientists reveal how patterns of brain activity direct specific body movements

More information: João C. Marques et al, Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering, Current Biology (2018). DOI: 10.1016/j.cub.2017.12.002

Related Stories

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Hidden deep in the brain, a map that guides animals' movements

August 30, 2017
New research has revealed that deep in the brain, in a structure called striatum, all possible movements that an animal can do are represented in a map of neural activity. If we think of neural activity as the coordinates ...

Motor cortex shown to play active role in learning movement patterns

May 4, 2014
Skilled motor movements of the sort tennis players employ while serving a tennis ball or pianists use in playing a concerto, require precise interactions between the motor cortex and the rest of the brain. Neuroscientists ...

From brouhaha to coordination: Motor learning from the neuron's point of view

February 9, 2017
When starting to learn to play the piano, there is much hesitation and hitting the wrong keys. But with training, the movements of the player become more fluid and accurate. This motor improvement begins in the brain, but ...

Study describes first maps of neural activity in behaving zebrafish

March 19, 2014
In a study published today in the scientific journal Neuron, neuroscientists at the Champalimaud Foundation, in collaboration with neuroscientists from Harvard University, describe the first activity maps at the resolution ...

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.