Pioneering new technique could boost understanding of causes of heart disease

January 9, 2018, University of Exeter

The complex and mysterious mechanisms that drive communication and reactions within human cells could be on the verge of being unravelled, due to a pioneering new technique.

Researchers from the Universities of Exeter, Leeds and Cambridge have harnessed an innovative new method to gain a greater understanding of signalling stations within the , called nanodomains.

They believe that the new technique could pave the way for a greater understanding behind the causes of potentially life-threatening conditions such as disease, as well as potential new treatment pathways.

The nanodomains are known to drive fundamental physiological processes in the body, including the onset of disease.

Scientists have, until now, generally relied on electron-microscopy to study these structures. However the technology has not allowed access to the finer mechanisms of the nanodomains at a molecular level.

Now, the UK research team have refined a new, light based technique that allows high-quality imaging of the signalling stations in the human heart.

The study is published in leading scientific journal Cell Reports on January 9 2018.

Professor Christian Soeller, who led the study and is at the new Living Systems Institute at the University of Exeter, said: "Slightly more than a decade ago nobody thought that we would ever see individual molecules with light, the resolution just seemed insufficient to resolve such fine detail."

"Since then an astonishing array of new tricks has been devised. In our latest advance, the use of synthetic DNA has been critical - the deep understanding of the chemistry of DNA we have today makes it an enormously versatile tool."

Expertise in the design of synthetic DNA strands was provided by Dr Lorenzo Di Michele from the University of Cambridge.

The ground-breaking allows scientists to pin-point any number of specific types of proteins within the cells, the counting of each species of protein, and observations of the precise patterns in which they are arranged.

As a result, the team says that their research provides a "perfect window" to examine the changes that occur in the molecular machinery as heart failure develops.

They believe the added visual detail that the new imaging provides will guide more decisive investigations into how to target or repair these signalling stations or the molecular machines within them more precisely.

First author Dr Isuru Jayasinghe, now at the University of Leeds, said: "At present, none of the treatments or therapies provided to specifically target the signalling stations - nanodomains - within the cell, which the evidence overwhelmingly suggests are a major cause of .

"We believe that by visualising these signalling structures at this level of detail using super-resolution microscopy we can help guide investigations into how we can target or repair these molecular machines and thus, in the long term, help patients to overcome heart disease."

Explore further: 'Heart repair' research boosted by new findings

More information: Cell Reports (2018). DOI: 10.1016/j.celrep.2017.12.045

Related Stories

'Heart repair' research boosted by new findings

September 16, 2016
Scientists trying to find ways to regenerate a damaged heart have shed more light on the molecular mechanisms that could one day make this a reality.

Heart signaling map sheds light on the molecular culprits behind cardiovascular disease

October 10, 2016
Having a big heart is not always a virtue and, from a physiologist's point of view, it can be deadly. An enlarged heart is a hallmark of dilated cardiomyopathy (DCM) and, despite being the most common inherited disease of ...

Sneak peek into the nanoworld of brain cells

January 9, 2017
A University of Queensland team is among the first in neuroscience to see the brain's tiniest molecules in action and plot their movements.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.