Pioneering new technique could boost understanding of causes of heart disease

January 9, 2018, University of Exeter

The complex and mysterious mechanisms that drive communication and reactions within human cells could be on the verge of being unravelled, due to a pioneering new technique.

Researchers from the Universities of Exeter, Leeds and Cambridge have harnessed an innovative new method to gain a greater understanding of signalling stations within the , called nanodomains.

They believe that the new technique could pave the way for a greater understanding behind the causes of potentially life-threatening conditions such as disease, as well as potential new treatment pathways.

The nanodomains are known to drive fundamental physiological processes in the body, including the onset of disease.

Scientists have, until now, generally relied on electron-microscopy to study these structures. However the technology has not allowed access to the finer mechanisms of the nanodomains at a molecular level.

Now, the UK research team have refined a new, light based technique that allows high-quality imaging of the signalling stations in the human heart.

The study is published in leading scientific journal Cell Reports on January 9 2018.

Professor Christian Soeller, who led the study and is at the new Living Systems Institute at the University of Exeter, said: "Slightly more than a decade ago nobody thought that we would ever see individual molecules with light, the resolution just seemed insufficient to resolve such fine detail."

"Since then an astonishing array of new tricks has been devised. In our latest advance, the use of synthetic DNA has been critical - the deep understanding of the chemistry of DNA we have today makes it an enormously versatile tool."

Expertise in the design of synthetic DNA strands was provided by Dr Lorenzo Di Michele from the University of Cambridge.

The ground-breaking allows scientists to pin-point any number of specific types of proteins within the cells, the counting of each species of protein, and observations of the precise patterns in which they are arranged.

As a result, the team says that their research provides a "perfect window" to examine the changes that occur in the molecular machinery as heart failure develops.

They believe the added visual detail that the new imaging provides will guide more decisive investigations into how to target or repair these signalling stations or the molecular machines within them more precisely.

First author Dr Isuru Jayasinghe, now at the University of Leeds, said: "At present, none of the treatments or therapies provided to specifically target the signalling stations - nanodomains - within the cell, which the evidence overwhelmingly suggests are a major cause of .

"We believe that by visualising these signalling structures at this level of detail using super-resolution microscopy we can help guide investigations into how we can target or repair these molecular machines and thus, in the long term, help patients to overcome heart disease."

Explore further: 'Heart repair' research boosted by new findings

More information: Cell Reports (2018). DOI: 10.1016/j.celrep.2017.12.045

Related Stories

'Heart repair' research boosted by new findings

September 16, 2016
Scientists trying to find ways to regenerate a damaged heart have shed more light on the molecular mechanisms that could one day make this a reality.

Heart signaling map sheds light on the molecular culprits behind cardiovascular disease

October 10, 2016
Having a big heart is not always a virtue and, from a physiologist's point of view, it can be deadly. An enlarged heart is a hallmark of dilated cardiomyopathy (DCM) and, despite being the most common inherited disease of ...

Sneak peek into the nanoworld of brain cells

January 9, 2017
A University of Queensland team is among the first in neuroscience to see the brain's tiniest molecules in action and plot their movements.

Recommended for you

3-D bioPen: A hydrogel injection to regenerate cartilage

September 25, 2018
Highly specialized cartilage is characteristically avascular and non-neural in composition with low cell numbers in an aliphatic environment. Despite its apparent simplicity, bioengineering regenerative hyaline cartilage ...

Skin wounds in older mice are less likely to scar

September 25, 2018
Researchers have discovered a rare example in which the mammalian body functions better in old age. A team at the University of Pennsylvania found that, in skin wounds in mice, being older increased tissue regeneration and ...

Study finds that enzymes 'partner up' to accelerate cancer, aging diseases

September 25, 2018
A new study from molecular biologists at Indiana University has identified cellular processes that appear to supercharge both the growth and shrinkage of the chemical "caps" on chromosomes associated with aging, called telomeres.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy

September 25, 2018
Massachusetts General Hospital (MGH) researchers have found that extracellular RNA (exRNA) in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about ...

Evidence that addictive behaviors have strong links with ancient retroviral infection

September 24, 2018
New research from an international team led by Oxford University's Department of Zoology and the National-Kapodistrian University of Athens, published today in Proceedings of the National Academy of Sciences (PNAS), shows ...

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.