Can vitamins and dietary supplements benefit patients with mitochondrial disease?

January 10, 2018, Children's Hospital of Philadelphia

Defects in mitochondria, the tiny structures that power our cells by functioning as biological batteries, cause an array of complex, often life-threatening disorders that can affect any and all organs and systems. In the absence of validated, effective drug treatments, patients with mitochondrial disease often take a variety of vitamins and supplements, substances that are largely unstandardized, unregulated, and unproven.

Experts in mitochondrial medicine propose to remedy that situation, calling for systematic scientific studies in cells and animals to lay the foundation for of precise nutritional interventions for patients with energy deficiency diseases.

"We're aiming to raise the bar for clinical treatments," said Marni J. Falk, MD, executive director of the Mitochondrial Medicine Frontier Program at Children's Hospital of Philadelphia (CHOP). Falk co-authored a new analysis of nutritional interventions for mitochondrial disorders published Nov. 3 in the Annual Review of Pathology: Mechanisms of Disease. "Our major objectives were to review the basic scientific evidence for compounds already being used in mitochondrial patients and to advocate a framework for rigorously evaluating their safety and efficacy in this population."

The review article represents the collaborative effort of expert co-authors from eight centers, including first author Adam J. Kuszak, PhD, of the Office of Dietary Supplements of the National Institute of Health (NIH). The current effort grew out of a 2014 NIH meeting focused on developing an evidence base for nutritional interventions in primary .

"Our analysis made it clear how much more we need to learn about developing effective nutritional treatments for mitochondrial disease," said co-author Zarazuela Zolkipli-Cunningham, MBChBD, a neuromuscular specialist and attending physician in CHOP's Mitochondrial Medicine Frontier Program. "There's a large gap between the compounds that patients are routinely using and the degree to which those compounds have been scientifically tested."

For instance, Zolkipli-Cunningham pointed to an "astounding variety" of the supplement coenzyme Q10 (CoQ10), sold over the counter in diverse versions and dosages. It is marketed as an antioxidant to reduce biological damage from reactive oxidant molecules.

However, she pointed out, there is no definitive evidence for health benefits from CoQ10. Moreover, there are no standardized formulations for this supplement, so patients may receive widely varying ingredients from one product to another. A third consideration is that a given supplement may act differently in a healthy consumer than in an individual with a mitochondrial disorder, because defects in mitochondria have wide-ranging effects on cellular function. Finally, supplements may act very differently across different subtypes of mitochondrial disease.

"Anything that affects cellular function is biologically acting as a drug, whether you obtain it from a pharmacy or a health food store," said Falk. "However, unlike prescription medications, which are closely regulated and standardized by the U.S. Food and Drug Administration, vitamins, dietary supplements, and medical foods are considered in our country to be in a separate regulatory category with much less stringent requirements. Their manufacturing standards are not as tightly regulated, and their claims are limited to optimizing general public health, not to treating specific diseases. So we know a lot less about their safety and efficacy in patients."

In the current study, the authors review the main types of nutritional therapies used in patients with mitochondrial disease. These include micronutrients, such as vitamins and vitamin-related substances like thiamine (B1), riboflavin (B2), nicotinic acid (B3, also known as niacin), and folic acid. Other nutritional therapies include metabolic-modifying agents such as L-arginine, creatine and CoQ10, cellular signaling-pathway modulators such as resveratrol, and macronutrient modifications such as the ketogenic diet.

Moving Toward More Precise Nutritional Therapies

The authors recommend that all nutritional interventions undergo rigorous testing, and detail the range of laboratory models available for such tests, including specific cell culture systems and experimental animals: C. elegans microscopic worms, fruit flies, zebrafish and mouse lines genetically engineered to model different forms of human mitochondrial diseases.

Preclinical studies in these cell culture systems and laboratory model animals, the authors say, should be used to advance precise treatments for different types of mitochondrial disease, setting the stage for clinical trials in both children and adults.

The Mitochondrial Medicine Frontier Program at CHOP already tests potential therapies in cells, worms and zebrafish, with the goal to discover precision therapies targeted to the distinct genetic disease affecting each patient. Partnering with external sponsors, the program will shortly have four active phase 2 or phase 3 clinical trials under way in mitochondrial disease patients. The program has also now hired a dedicated dietitian, possibly the first dietitian in the U.S. focused on harnessing all aspects of nutrition to improve health in patients with mitochondrial diseases.

"As we move toward translating research leads into therapies to test in individualized, patient-centered clinical trials, we need to focus on improving health outcomes that are meaningful to ," said Falk. Patients each typically have more than a dozen symptoms, most commonly muscle weakness, chronic fatigue, exercise intolerance and balance problems—hallmarks of the energy shortages stemming from malfunctioning mitochondria.

"Our toolbox is so much better than what was available 20 years ago," said Falk, who draws on next-generation sequencing technologies that have enabled researchers to identify approximately 300 different genes in which inherited mutations cause mitochondrial disease. She then integrates the broad advances that have been made in understanding the biology of how from different genetic causes leads to disease, together with cutting-edge laboratory techniques and a growing cadre of model systems that can now be readily exploited to prioritize precision-medicine strategies to test in clinical trials. "But of course, we still have a lot of work ahead of us to develop proven, effective nutritional and drug therapies for the diverse array of ."

Explore further: New clinical care guidelines issued for patients with mitochondrial disease

More information: Kathryn M. Camp et al, Nutritional interventions in primary mitochondrial disorders: Developing an evidence base, Molecular Genetics and Metabolism (2016). DOI: 10.1016/j.ymgme.2016.09.002

Related Stories

New clinical care guidelines issued for patients with mitochondrial disease

October 25, 2017
Physicians who see patients with mitochondrial disease now have a practical new tool—a set of guidelines for managing and caring for those patients. Occurring in at least one in 4,500 individuals, mitochondrial disease ...

Vitamin C deficiency and mitochondrial dysfunction in Alzheimer's disease

December 4, 2017
Early clinical features of sporadic Alzheimer's disease include alterations in mitochondrial function that appear prior to classical features. Mitochondrial dysfunction increases the production of reactive oxygen species ...

Novel treatments emerging for human mitochondrial diseases

July 20, 2015
Using existing drugs, such as lithium, to restore basic biological processes in human cells and animal models, researchers may have broken a long-standing logjam in devising effective treatments for human mitochondrial diseases.

Restoring cellular energy signals may treat mitochondrial diseases in humans

April 15, 2015
Rooted in malfunctions in the tiny power plants that energize our cells, mitochondrial disorders are notoriously complex and variable, with few effective treatments. Now, novel findings in microscopic worms may hold great ...

Mitochondrial disease has a disproportionate healthcare burden in US

June 28, 2017
Mitochondrial diseases are a diverse group of disorders caused by mutated genes that impair energy production in a patient's cells, often with severe effects. When patients with these diseases are hospitalized, they incur ...

Animal results may pave way to treating rare mitochondrial diseases in children

May 19, 2011
A human drug that both prevents and cures kidney failure in mice sheds light on disabling human mitochondrial disorders, and may represent a potential treatment in people with such illnesses.

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.