Can vitamins and dietary supplements benefit patients with mitochondrial disease?

January 10, 2018, Children's Hospital of Philadelphia

Defects in mitochondria, the tiny structures that power our cells by functioning as biological batteries, cause an array of complex, often life-threatening disorders that can affect any and all organs and systems. In the absence of validated, effective drug treatments, patients with mitochondrial disease often take a variety of vitamins and supplements, substances that are largely unstandardized, unregulated, and unproven.

Experts in mitochondrial medicine propose to remedy that situation, calling for systematic scientific studies in cells and animals to lay the foundation for of precise nutritional interventions for patients with energy deficiency diseases.

"We're aiming to raise the bar for clinical treatments," said Marni J. Falk, MD, executive director of the Mitochondrial Medicine Frontier Program at Children's Hospital of Philadelphia (CHOP). Falk co-authored a new analysis of nutritional interventions for mitochondrial disorders published Nov. 3 in the Annual Review of Pathology: Mechanisms of Disease. "Our major objectives were to review the basic scientific evidence for compounds already being used in mitochondrial patients and to advocate a framework for rigorously evaluating their safety and efficacy in this population."

The review article represents the collaborative effort of expert co-authors from eight centers, including first author Adam J. Kuszak, PhD, of the Office of Dietary Supplements of the National Institute of Health (NIH). The current effort grew out of a 2014 NIH meeting focused on developing an evidence base for nutritional interventions in primary .

"Our analysis made it clear how much more we need to learn about developing effective nutritional treatments for mitochondrial disease," said co-author Zarazuela Zolkipli-Cunningham, MBChBD, a neuromuscular specialist and attending physician in CHOP's Mitochondrial Medicine Frontier Program. "There's a large gap between the compounds that patients are routinely using and the degree to which those compounds have been scientifically tested."

For instance, Zolkipli-Cunningham pointed to an "astounding variety" of the supplement coenzyme Q10 (CoQ10), sold over the counter in diverse versions and dosages. It is marketed as an antioxidant to reduce biological damage from reactive oxidant molecules.

However, she pointed out, there is no definitive evidence for health benefits from CoQ10. Moreover, there are no standardized formulations for this supplement, so patients may receive widely varying ingredients from one product to another. A third consideration is that a given supplement may act differently in a healthy consumer than in an individual with a mitochondrial disorder, because defects in mitochondria have wide-ranging effects on cellular function. Finally, supplements may act very differently across different subtypes of mitochondrial disease.

"Anything that affects cellular function is biologically acting as a drug, whether you obtain it from a pharmacy or a health food store," said Falk. "However, unlike prescription medications, which are closely regulated and standardized by the U.S. Food and Drug Administration, vitamins, dietary supplements, and medical foods are considered in our country to be in a separate regulatory category with much less stringent requirements. Their manufacturing standards are not as tightly regulated, and their claims are limited to optimizing general public health, not to treating specific diseases. So we know a lot less about their safety and efficacy in patients."

In the current study, the authors review the main types of nutritional therapies used in patients with mitochondrial disease. These include micronutrients, such as vitamins and vitamin-related substances like thiamine (B1), riboflavin (B2), nicotinic acid (B3, also known as niacin), and folic acid. Other nutritional therapies include metabolic-modifying agents such as L-arginine, creatine and CoQ10, cellular signaling-pathway modulators such as resveratrol, and macronutrient modifications such as the ketogenic diet.

Moving Toward More Precise Nutritional Therapies

The authors recommend that all nutritional interventions undergo rigorous testing, and detail the range of laboratory models available for such tests, including specific cell culture systems and experimental animals: C. elegans microscopic worms, fruit flies, zebrafish and mouse lines genetically engineered to model different forms of human mitochondrial diseases.

Preclinical studies in these cell culture systems and laboratory model animals, the authors say, should be used to advance precise treatments for different types of mitochondrial disease, setting the stage for clinical trials in both children and adults.

The Mitochondrial Medicine Frontier Program at CHOP already tests potential therapies in cells, worms and zebrafish, with the goal to discover precision therapies targeted to the distinct genetic disease affecting each patient. Partnering with external sponsors, the program will shortly have four active phase 2 or phase 3 clinical trials under way in mitochondrial disease patients. The program has also now hired a dedicated dietitian, possibly the first dietitian in the U.S. focused on harnessing all aspects of nutrition to improve health in patients with mitochondrial diseases.

"As we move toward translating research leads into therapies to test in individualized, patient-centered clinical trials, we need to focus on improving health outcomes that are meaningful to ," said Falk. Patients each typically have more than a dozen symptoms, most commonly muscle weakness, chronic fatigue, exercise intolerance and balance problems—hallmarks of the energy shortages stemming from malfunctioning mitochondria.

"Our toolbox is so much better than what was available 20 years ago," said Falk, who draws on next-generation sequencing technologies that have enabled researchers to identify approximately 300 different genes in which inherited mutations cause mitochondrial disease. She then integrates the broad advances that have been made in understanding the biology of how from different genetic causes leads to disease, together with cutting-edge laboratory techniques and a growing cadre of model systems that can now be readily exploited to prioritize precision-medicine strategies to test in clinical trials. "But of course, we still have a lot of work ahead of us to develop proven, effective nutritional and drug therapies for the diverse array of ."

Explore further: New clinical care guidelines issued for patients with mitochondrial disease

More information: Kathryn M. Camp et al, Nutritional interventions in primary mitochondrial disorders: Developing an evidence base, Molecular Genetics and Metabolism (2016). DOI: 10.1016/j.ymgme.2016.09.002

Related Stories

New clinical care guidelines issued for patients with mitochondrial disease

October 25, 2017
Physicians who see patients with mitochondrial disease now have a practical new tool—a set of guidelines for managing and caring for those patients. Occurring in at least one in 4,500 individuals, mitochondrial disease ...

Vitamin C deficiency and mitochondrial dysfunction in Alzheimer's disease

December 4, 2017
Early clinical features of sporadic Alzheimer's disease include alterations in mitochondrial function that appear prior to classical features. Mitochondrial dysfunction increases the production of reactive oxygen species ...

Novel treatments emerging for human mitochondrial diseases

July 20, 2015
Using existing drugs, such as lithium, to restore basic biological processes in human cells and animal models, researchers may have broken a long-standing logjam in devising effective treatments for human mitochondrial diseases.

Restoring cellular energy signals may treat mitochondrial diseases in humans

April 15, 2015
Rooted in malfunctions in the tiny power plants that energize our cells, mitochondrial disorders are notoriously complex and variable, with few effective treatments. Now, novel findings in microscopic worms may hold great ...

Mitochondrial disease has a disproportionate healthcare burden in US

June 28, 2017
Mitochondrial diseases are a diverse group of disorders caused by mutated genes that impair energy production in a patient's cells, often with severe effects. When patients with these diseases are hospitalized, they incur ...

Animal results may pave way to treating rare mitochondrial diseases in children

May 19, 2011
A human drug that both prevents and cures kidney failure in mice sheds light on disabling human mitochondrial disorders, and may represent a potential treatment in people with such illnesses.

Recommended for you

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.