A brain chemical blamed for mental decline in old age could hold key to its reversal

February 6, 2018 by Dana Smith, University of California, San Francisco
A brain chemical blamed for mental decline in old age could hold key to its reversal
Credit: University of California, San Francisco

It's a fact of life, for lifeforms big and small, that the mind declines with age. Now researchers at UC San Francisco have identified the buildup of one brain chemical as a key culprit behind age-related learning and memory impairments. Tuning levels of this chemical in the worm C. elegans, they could delay and even reverse the declines of old age.

For C. elegans, a tiny worm that lives only about two weeks, old age and its handicaps come fast – which makes them a convenient model for studying aging. A seven-day old worm has only five percent of the learning capacity of a one-day old worm.

"You look at a person, a fly, a mouse, and a worm. They all look very different from each other, of course. But the amazing thing is the basic building blocks turn out to be the same," said Kaveh Ashrafi, Ph.D., a professor of physiology and member of the UCSF Weill Institute for Neurosciences, who led the new research.

In both C. elegans and humans, the chemical kynurenic acid (KYNA) accumulates with age. As it builds up, KYNA interferes with the activity of glutamate, a essential for learning and memory. In humans, it has previously been linked to neurodegenerative disorders, including Alzheimer's and Parkinson's disease.

In the study published Jan. 31, 2018, in Genes and Development, researchers looked at the effect of KYNA on the ' ability to learn an association between a neutral smell and food.

The researchers found that by keeping KYNA levels low throughout the worm's life, they could prevent the onset of age-related decline – the worms kept learning. In older worms already impaired, lowering KYNA levels could counteract the impairments – raising hope that interventions later in life may be effective in reversing neurological decline.

The reason that KYNA increases with age is still a mystery, but the new study offers an intriguing hint, by linking KYNA buildup in aging worms to elevated levels of insulin, a hormone that controls blood sugar in both worms and humans. In contrast, earlier experiments by Ashrafi's team had found that fasting, which has been linked to longevity, reduced levels of KYNA in worms and improved learning and memory.

Ashrafi thinks that KYNA is the linchpin through which fasting makes the brain better at learning, while aging makes it worse. "These are two sides of the same coin," he said.

Explore further: Researchers find chemical switch that may decrease symptoms of schizophrenia

More information: Mihir Vohra et al. Kynurenic acid accumulation underlies learning and memory impairment associated with aging, Genes & Development (2018). DOI: 10.1101/gad.307918.117

Related Stories

Researchers find chemical switch that may decrease symptoms of schizophrenia

February 7, 2017
A new study by University of Maryland School of Medicine researchers has found that in mice, adjusting levels of a compound called kynurenic acid can have significant effects on schizophrenia-like behavior. The study appeared ...

Dietary restriction can improve learning in worms

August 1, 2017
Dietary restriction - the reduction of a specific nutrient or total dietary intake without triggering malnutrition—increases longevity and improves learning, but are these processes regulated separately? A new study publishing ...

New gene variant may explain psychotic features in bipolar disorder

March 5, 2013
Researchers at Karolinska Institutet in Sweden have found an explanation for why the level of kynurenic acid (KYNA) is higher in the brains of people with schizophrenia or bipolar disease with psychosis. The study, which ...

Obesity clues in humans may be unearthed first in a worm

September 27, 2011
Obesity is not regarded as an epidemic among tiny worms that dine on bacteria — but for humans battling weight gain with seemingly insatiable appetites, research on a soil-dwelling roundworm may lead to clues for weight ...

Flashing neurons in worms reveal how the brain generates behavior

October 4, 2017
The 100 billion neurons of the human brain control our behavior, but so far there is no way to keep track of all that activity, cell by cell. Whole-brain imaging techniques like fMRI offer only a blurry view of the action, ...

Drug could stop marijuana cravings

October 14, 2013
(Medical Xpress)—In the US, more people seek treatment for marijuana abuse than for abuse of cocaine or heroin. However, there are no approved treatments for marijuana addiction. Robert Schwarcz of the University of Maryland ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.