Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018, Johns Hopkins University School of Medicine
A schematic of the study results show stochastic (random) gains in DNA methylation at CpG sites (black circles) occur in developmental regulator genes during tumorigenesis or normal aging compared to programmatic methylation gains in metabolic regulators during senescence. Senescence is a state of permanent arrest from which the cells cannot be transformed. Each line of circles depict the methylation (black circle) or no methylation (white circle) in independent cells. Credit: Cancer Cell

Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration process called senescence. Now, researchers at the Johns Hopkins Kimmel Cancer Center demonstrated that instead, tumor-associated epigenetic states evolve erratically during early stages of tumor development, eventually selecting for a subset of genes that undergo the most changes during normal aging and in early tumor development.

The work, published in the Feb. 12 issue of Cancer Cell, may help refine biomarkers of cancer risk. Screening for these genes may help stratify, for every age group, individuals with the highest risk for cancer development, the authors say.

"Aging is probably the leading risk factor for most common cancers," says coauthor Stephen Baylin, M.D., the Virginia and Daniel K. Ludwig Professor of Cancer Research at the Kimmel Cancer Center. As epigenetic changes are reversible in laboratory models, some scientists are considering the possibility of modifying this risk factor as a potential way to modulate aging as a cancer risk factor. "Maybe you won't find the Ponce de León Fountain of Youth, but if you could dampen down the risk of cancer for every decade you age, that could be huge," says Baylin.

For the study, investigators studied patterns of DNA methylation, a process by which add tiny methyl chemical groups to a beginning region of a gene's DNA sequence, often silencing the gene's activation. They took from human foreskin samples and followed an established, three-step laboratory process called Weinberg's classical transformation system to convert the cells to . The process includes infecting cells with genes known to induce . The scientists also injected the early transformed cells into mice to monitor their progression. They took a second group of fibroblast cells and let them naturally mature into senescence. The researchers followed methylation changes observed in both groups of cells over time.

"Senescence is a very well-known, normal aging process that is actually an antitumor mechanism. It occurs when cells perceive an excess of DNA damage, when cells undergo too many cell divisions or when they experience cancer development-related stress. So it was puzzling to us how the senescence process could lead to the formation of tumors," says senior study leader Hariharan Easwaran, Ph.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

To solve the mystery, Easwaran, Baylin and collaborators began mapping the evolution of epigenetic DNA methylation alterations during senescence and transformation. They found that although the alterations appeared similar between and transformed cells, the way they evolved and the genes that got methylated were different for the most part.

The researchers found that DNA methylation that evolved during senescence was very programmed, so much so that replicates of the senescence process in different petri dishes all had the same epigenetic pattern, Easwaran says. Independent replicates of the transformation process, by contrast, appeared very stochastic, or random.

In addition, the transformation process primarily involved regulator genes that are critical for cancers to maintain the characteristics of a cancer cell, Baylin says. In comparison, senescence involves a number of metabolic process genes.

In additional experiments, Wenbing Xie, Ph.D., the study's lead author, could not coax senescent cells into becoming transformed cells, serving as a protection against development, and identified a subset of transformation-associated methylated genes that were most prone to get methylated during early tumor formation and during aging. In future work, the researchers will explore tissue-specific patterns of DNA methylation gains for the senescence and transformation classes of , and hope to use that to devise strategies for determining age-associated risk-stratification of tumor development.

Explore further: Another piece to the puzzle in naked mole rats' long, cancer-free life

More information: Wenbing Xie et al. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk, Cancer Cell (2018). DOI: 10.1016/j.ccell.2018.01.008

Related Stories

Another piece to the puzzle in naked mole rats' long, cancer-free life

February 6, 2018
With their large buck teeth and wrinkled, hairless bodies, naked mole rats won't be winning any awards for cutest rodent. But their long life span—they can live up to 30 years, the longest of any rodent—and remarkable ...

'Epigenetic' changes from cigarette smoke may be first step in lung cancer development

September 11, 2017
Scientists at the Johns Hopkins Kimmel Cancer Center say they have preliminary evidence in laboratory-grown, human airway cells that a condensed form of cigarette smoke triggers so-called "epigenetic" changes in the cells ...

Cancer cells that escape from senescence found to have an enhanced capacity to drive tumor growth

December 22, 2017
An international team of researchers has found that cancer cells that escape from senescence due to use of chemotherapy have an enhanced capacity to drive tumor growth. In their paper published in the journal Nature, the ...

How NORE1A acts as a barrier to tumor growth

March 16, 2015
Researchers reveal how cells protect themselves from a protein that is a key driver of cancer. The study appears in The Journal of Cell Biology.

Recommended for you

'Kiss of death' cancer: How computational geeks may have uncovered a therapy for a deadly disease

June 19, 2018
It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negative breast cancer is aggressive and deadly. Patients ...

Ovarian cancer cells switched off by 'unusual' mechanism

June 19, 2018
Scientists at the Ovarian Cancer Action Research Centre at Imperial College London have discovered a mechanism that deactivates ovarian cancer cells.

Team discovers gene mutations linked to pancreatic cancer

June 19, 2018
Six genes contain mutations that may be passed down in families, substantially increasing a person's risk for pancreatic cancer. That's according to Mayo Clinic research published in the June 19 edition of the JAMA. However, ...

Breast cancer could be prevented by targeting epigenetic proteins, study suggests

June 19, 2018
Researchers at the Princess Margaret Cancer Centre in Toronto have discovered that epigenetic proteins promote the proliferation of mammary gland stem cells in response to the sex hormone progesterone. The study, which will ...

Targeting the engine room of the cancer cell

June 18, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug ...

Study suggests well-known growth suppressor actually fuels lethal brain cancers

June 18, 2018
Scientists report finding a potentially promising treatment target for aggressive and deadly high-grade brain cancers like glioblastoma. But they also say the current lack of a drug that hits the molecular target keeps it ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gettingwell
not rated yet Feb 24, 2018
Interesting study, but the above graphic needed work:
https://surfaceyo...ylation/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.