Eye could provide 'window to the brain' after stroke

February 7, 2018, National Institutes of Health
Eye could provide 'window to the brain' after stroke
MRI scans revealed that a chemical called gadolinium, used to improve images, leaked into the eyes of stroke patients. Credit: NINDS Stroke Branch, Bethesda, MD

Research into curious bright spots in the eyes on stroke patients' brain images could one day alter the way these individuals are assessed and treated. A team of scientists at the National Institutes of Health found that a chemical routinely given to stroke patients undergoing brain scans can leak into their eyes, highlighting those areas and potentially providing insight into their strokes. The study was published in Neurology.

"We were kind of astounded by this - it's a very unrecognized phenomenon," said Richard Leigh, M.D., an assistant clinical investigator at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and the paper's senior author. "It raises the question of whether there is something we can observe in the eye that would help clinicians evaluate the severity of a and guide us on how best to help ."

The eyes glowed so brightly on those images due to gadolinium, a harmless, transparent chemical often given to patients during magnetic resonance imaging (MRI) scans to highlight abnormalities in the brain. In healthy individuals, gadolinium remains in the blood stream and is filtered out by the kidneys. However, when someone has experienced damage to the blood-brain barrier, which controls whether substances in the blood can enter the brain, gadolinium leaks into the brain, creating bright spots that mark the location of brain damage.

Previous research had shown that certain eye diseases could cause a similar disruption to the blood-ocular barrier, which does for the eye what the blood-brain barrier does for the brain. Dr. Leigh's team discovered that a stroke can also compromise the blood-ocular barrier and that the gadolinium that leaked into a patient's eyes could provide information about his or her stroke.

"It looks like the stroke is influencing the eye, and so the eye is reflective of what is going on in the brain," Dr. Leigh said. "Clearly these results are preliminary, so future studies will have to be attuned to this to fully understand its impact."

The researchers performed MRI scans on 167 upon admission to the hospital without administering gadolinium and compared them to scans taken using gadolinium two hours and 24 hours later. Because gadolinium is transparent, it did not affect patients' vision and could only be detected with MRI scans. Roughly three-quarters of the patients experienced gadolinium leakage into their eyes on one of the scans, with 66 percent showing it on the two-hour scan and 75 percent on the 24-hour scan. The phenomenon was present in both untreated patients and patients who received a treatment, called tPA, to dissolve the blood clot responsible for their strokes.

Gadolinium was typically present in the front part of the eye, called the aqueous chamber, after two hours, and in a region towards the back, called the vitreous chamber, after 24 hours. Patients showing gadolinium in the vitreous chamber at the later timepoint tended to be of older age, have a history of hypertension, and have more bright spots on their , called white matter hyperintensities, that are associated with brain aging and decreased cognitive function.

In a minority of patients, the two-hour scan showed gadolinium in both eye chambers. The strokes in those patients tended to affect a larger portion of the brain and cause even more damage to the than the strokes of patients with a slower pattern of gadolinium leakage or no leakage at all. The findings raise the possibility that, in the future, clinicians could administer a substance to patients that would collect in the eye just like gadolinium and quickly yield important information about their strokes without the need for an MRI.

"It is much easier for us to look inside somebody's eye than to look into somebody's brain," Dr. Leigh said. "So if the eye truly is a window to the , we can use one to learn about the other."

Despite the relationship between gadolinium leakage and stroke severity, the phenomenon was not found to be related to the level of disability the patients developed following their strokes. It also remains unclear whether can enter the eye in healthy people.

Explore further: Study finds no evidence that gadolinium causes neurologic harm

More information: Hitomi et al. Blood-ocular barrier disruption in acute stroke patients. Neurology. February 7, 2018. DOI: 10.1212/WNL.0000000000005123.

Related Stories

Study finds no evidence that gadolinium causes neurologic harm

November 29, 2017
There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive decline, according to a new study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Study: Intracranial pathology not necessary for gadolinium deposition in brain tissues

June 27, 2017
Minute traces of gadolinium, the contrast agent used to enhance MR images, are often retained in the brain tissue of patients years after undergoing MRI. Some studies have suggested this deposition was limited to patients ...

No association found between contrast agents used for MRIs and nervous system disorder

July 5, 2016
In a study appearing in the July 5 issue of JAMA, Blayne Welk, M.D., M.Sc., of Western University, London, Canada, and colleagues conducted a study to assess the association between gadolinium exposure and parkinsonism, a ...

FDA issues tougher warning on MRI dye tied to brain effects

December 19, 2017
(HealthDay)—The U.S. Food and Drug Administration on Tuesday called for tougher warnings and "additional research" into a dye commonly used with standard MRIs.

Chuck Norris says MRI dye harmed wife's brain, but study finds no link

November 29, 2017
(HealthDay)—Despite recent claims from actor Chuck Norris that a dye commonly used during MRI scans seriously sickened his wife, a new study finds no evidence to support such a link.

Recommended for you

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.