Gene expression patterns may help determine time of death

February 13, 2018, Center for Genomic Regulation

International team of scientists led by Roderic Guigó at the Centre for Genomic Regulation in Barcelona showed that changes in gene expression in different tissues triggered by death can be used to predict the time of death of an individual. As reported in a paper published in Nature Communications this week, researchers suggest that by analysing a few readily available tissues (for example lung or skin tissue), the post-mortem interval (time elapsed since death) can be determined with considerable accuracy and may have implications for forensic analyses.

It all started with the GTEx project, which aimed at creating a reference database and for scientists to study how genomic variants affect and disease susceptibility. GTEx was designed to sample as many tissues as possible from a large number of individuals in order to understand the causal effects of genes and variants, and which tissues contribute to predisposition to disease. "GTEx data allow us to ask questions about genetic variation and its effects on both in one tissue and across many tissues. Since the samples we are using all come from deceased donors, we need to find out if there were changes in gene expression related to the death or the time of death, so we could better model our predictions of variation between tissues or in disease," explains Roderic Guigó, lead author of this study and coordinator of the Bioinformatics and Genomics Programme at the CRG.

To understand the tissue-specific changes to gene expression following the death of a person, Roderic Guigó and his colleagues studied RNA-sequencing data of over 7,000 samples from 36 different tissues obtained from 540 donor within the GTEx project. They show that the time since death has an effect on gene expression and that this effect varies from tissue to tissue. The authors developed models for the prediction of the post-mortem interval based on these tissue-specific gene expression changes using high-throughput sequencing of the cell.

"We found that many change expression over relatively short post-mortem intervals, in a largely specific manner. This information helps us to better understand variation and also it allows us to identify the transcriptional events triggered by in an organism," adds Pedro G. Ferreira, CRG Alumnus currently at the Institute of Molecular Pathology and Immunology, University of Porto in Portugal.

Researchers have studied the effect of different covariates on biological analysis. The model could be further improved to make it applicable to a forensics scenario and to devise a protocol for the potential implementation in forensic pathology.

Explore further: Team completes atlas of human DNA differences that influence gene expression

More information: Pedro G. Ferreira et al, The effects of death and post-mortem cold ischemia on human tissue transcriptomes, Nature Communications (2018). DOI: 10.1038/s41467-017-02772-x

Related Stories

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

New model for collecting high quality biospecimens for genomic analysis

November 9, 2015
A successful pilot study demonstrated the feasibility of a novel approach for collecting healthy post-mortem blood and tissue samples from hundreds of donors for use in gene expression analysis. This new biospecimen collection ...

New GTEx findings show how DNA differences influence gene activity, disease susceptibility

May 7, 2015
Researchers funded by the National Institutes of Health Genotype-Tissue Expression (GTEx) project have created a new and much-anticipated data resource to help establish how differences in an individual's genomic make-up ...

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Scientists demonstrate path to linking the genome to healthy tissues and disease

October 13, 2017
Our genomes help to determine who we are - the countless variations between individuals that encode the complexity of tissues and functions throughout the body. Since scientists first decoded a draft of the human genome more ...

Recommended for you

Natural barcodes enable better cell tracking

April 24, 2018
Each of us carries in our genomes about 10 million genetic variations called single nucleotide polymorphisms (SNPs), which represent a difference of just one letter in the genetic code. Every human's pattern of SNPs is unique ...

The role of 'extra' DNA in cancer evolution and therapy resistance

April 23, 2018
Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Response to standard-of-care treatment is poor, with a two-year survival rate of only 15 percent. Research is beginning to provide a better understanding ...

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.