New insights into how the retina processes orientation

February 26, 2018 by Anna Williams, Northwestern University
An image from the study of orientation-selective ganglion cells in the mouse retina. Credit: Northwestern University

In a study published in Nature Communications, Northwestern Medicine scientists detail the discovery of two types of cells in the retina that determine horizontal or vertical orientation, and demonstrated for the first time how they convey information.

Amurta Nath, a fifth-year doctoral student in the Northwestern University Interdepartmental Neuroscience Program (NUIN), was the first author of the study, which was led by principal investigator Gregory Schwartz, Ph.D., assistant professor of Ophthalmology and Physiology.

Schwartz's laboratory investigates the , a layer of tissue at the back of the eye that helps the brain process visual surroundings. In particular, the team is using mouse models to characterize each of the 50 different kinds of neurons within the retina, called , that carry information to the brain.

"Unlike the textbook view of it being a glorified camera, the retina is actually a very complex image processing machine, with 50 different output ," Schwartz said. "We're defining those different cells—learning what they do, and how they do it. This study is one example of that."

In the study, the scientists identified that there are two types of so-called orientation-selective (OS RGCs) within the mouse retina—one helps to recognize when an object is horizontal, while the other recognizes vertical orientation.

The scientists also demonstrated that it is the coupling between ganglion cells and amacrine cells—through what's known as electrical synapses—that enables these RGCs to recognize orientations.

"Electrical synapses are not typically thought of as the key drivers of feature selectivity; what the cell cares about is thought to come from its regular chemical synaptic input. This is an exception," Schwartz said. "This cell actually inherits its feature selectivity through an electrical synapse."

The new insights into the retina could eventually help inform interventions for blindness, including retina prosthetics.

"Retina prosthetics are now coming out, and in order to improve them, it would be helpful to know exactly what kind of computations are going on in different RGCs," Nath said. "The more we learn about how the retina works, the better we can make an artificial one."

In ongoing research, Nath is now investigating the cell to which these RGCs couple to carry orientation information, which he calls "comet" amacrine cells. Within Schwartz's laboratory, scientists are also working on genotyping each of the 50 cell types within the retina, among other projects.

Explore further: Myopia cell discovered in retina

More information: Amurta Nath et al. Electrical synapses convey orientation selectivity in the mouse retina, Nature Communications (2017). DOI: 10.1038/s41467-017-01980-9

Related Stories

Myopia cell discovered in retina

February 6, 2017
Northwestern Medicine scientists have discovered a cell in the retina that may cause myopia when it dysfunctions. The dysfunction may be linked to the amount of time a child spends indoors and away from natural light.

Researchers shed light on how our eyes process visual cues

June 7, 2017
The mystery of how human eyes compute the direction of moving light has been made clearer by scientists at The University of Queensland.

Zebrafish reveal the ups and downs of vision

June 30, 2016
Researchers from the Centre for Developmental Neurobiology at King's College London have shed light on how we perceive and recognise specific visual stimuli.

Eye's motion detection sensors identified

June 17, 2015
Driving a car at 40 mph, you see a child dart into the street. You hit the brakes. Disaster averted.

Circuit in the eye relies on built-in delay to see small moving objects

August 31, 2015
When we move our head, the whole visual world moves across our eyes. Yet we can still make out a bee buzzing by or a hawk flying overhead, thanks to unique cells in the eye called object motion sensors. A new study on mice ...

Computations of visual motion in the brain

May 22, 2017
Botond Roska and his group at the FMI have elucidated how the retina and the visual cortex work together in visual motion perception. They found that cortical cells, which respond preferentially to backward image motion, ...

Recommended for you

Researchers are one step closer to developing eye drops to treat age-related macular degeneration

July 19, 2018
Scientists at the University of Birmingham are one step closer to developing an eye drop that could revolutionise treatment for age-related macular degeneration (AMD).

An orange a day keeps macular degeneration away: 15-year study

July 12, 2018
A new study has shown that people who regularly eat oranges are less likely to develop macular degeneration than people who do not eat oranges.

Injectable electronics offer powerful new tool in understanding how retinal cells work

June 28, 2018
Charles Lieber and his group are rewriting the rules of how scientists study retinal cells, and they're doing it with a single injection.

Why the eye could be the window to brain degeneration such as Alzheimer's disease

June 26, 2018
Researchers from Queen's University Belfast have shown for the first time that the eye could be a surrogate for brain degeneration like Alzheimer's disease (AD).

Microglia protect sensory cells needed for vision after retinal detachment

June 18, 2018
A research team at Massachusetts Eye and Ear has shown that microglia, the primary immune cells of the brain and retina, play a protective role in response to retinal detachment. Retinal detachment and subsequent degeneration ...

161 genetic factors for myopia identified

June 15, 2018
The international Consortium for Refractive Error and Myopia (CREAM) recently published the largest-ever genetic study of myopia in Nature Genetics. Researchers from the Gutenberg Health Study at the Medical Center of Johannes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.