Stem-cell based stroke treatment repairs brain tissue

February 15, 2018, University of Georgia
The exosomes, shown as small red punctate clusters, are taken up by neurons, shown as green cell extensions surrounding a blue nucleus. Credit: University of Georgia

A team of researchers at the University of Georgia's Regenerative Bioscience Center and ArunA Biomedical, a UGA startup company, have developed a new treatment for stroke that reduces brain damage and accelerates the brain's natural healing tendencies in animal models. They published their findings in the journal Translational Stroke Research.

The research team led by UGA professor Steven Stice and Nasrul Hoda of Augusta University created a treatment called AB126 using extracellular vesicles (EV), fluid-filled structures known as exosomes, which are generated from human .

Fully able to cloak itself within the bloodstream, this type of regenerative EV therapy appears to be the most promising in overcoming the limitations of many cell therapies—with the ability for exosomes to carry and deliver multiple doses—as well as the ability to store and administer treatment. Small in size, the tiny tubular shape of an exosome allows EV therapy to cross barriers that cells cannot.

"This is truly exciting evidence, because exosomes provide a stealth-like characteristic, invisible even to the body's own defenses," said Stice, Georgia Research Alliance Eminent Scholar and D.W. Brooks Distinguished Professor in the College of Agricultural and Environmental Sciences. "When packaged with therapeutics, these treatments can actually change cell progression and improve functional recovery."

Following the administration of AB126, the researchers used MRI scans to measure brain atrophy rates in preclinical, age-matched models, which showed an approximately 35 percent decrease in the size of injury and 50 percent reduction in brain tissue loss—something not observed acutely in previous studies of exosome treatment for stroke.

Outside of rodents, the results were replicated by Franklin West, associate professor of animal and dairy science, and fellow RBC members using a porcine model of stroke—the only one of its kind in the U.S.

Based on these pre-clinical results, ArunA Biomedical plans to begin human studies in 2019, said Stice, who is also chief scientific officer of ArunA Biomedical.

"Until now, we had very little evidence specific to neural exosome treatment and the ability to improve motor function," said Stice. "Just days after stroke, we saw better mobility, improved balance and measurable behavioral benefits in treated animal models."

Named as part of the 'stroke belt' region, Georgia continues to exceed the national average in stroke deaths, which is the third leading cause of death in the U.S., with more than 140,000 Americans dying each year, according to the Centers for Disease Control and Prevention.

ArunA recently unveiled advances to the company's proprietary neural cell platform for the production of exosome manufacturing. Today, ArunA's manufacturing process positions the company to produce AB126 exosomes at a scale to meet early clinical demand. The company has plans to expand this initiative beyond stroke for preclinical studies in epilepsy, traumatic brain and spinal cord injuries later this year.

Researchers also plan to leverage collaborations with other institutions through the National Science Foundation Engineering Research Center for Cell Manufacturing Technologies, based at the Georgia Institute of Technology and supported by $20 million in NSF funding.

Stice, the UGA lead for CMaT, and industry partners like ArunA Biomedical, will develop tools and technologies for the consistent and low-cost production of high-quality living therapeutic that could revolutionize for stroke, cancer, heart disease and other disorders.

Explore further: Brain stimulation plus adult neural stem cells may speed stroke recovery

More information: Robin L. Webb et al. Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model, Translational Stroke Research (2017). DOI: 10.1007/s12975-017-0599-2

Related Stories

Brain stimulation plus adult neural stem cells may speed stroke recovery

January 24, 2018
Electrically stimulating implanted adult stem cells may someday speed stroke recovery, according to preliminary research presented at the American Stroke Association's International Stroke Conference 2018, a world premier ...

The rat race is over: New livestock model for stroke could speed discovery

September 25, 2017
It is well-known in the medical field that the pig brain shares certain physiological and anatomical similarities with the human brain. So similar are the two that researchers at the University of Georgia's Regenerative Bioscience ...

'Brain Glue' repairs traumatic brain injuries

August 29, 2017
Researchers at the University of Georgia's Regenerative Bioscience Center have developed Brain Glue, a substance that could one day serve as a treatment for traumatic brain injuries, or TBIs.

Protein could prevent brain damage caused by stroke

March 20, 2017
A small protein that could protect the brain from stroke-induced injury has been discovered by researchers from The University of Queensland and Monash University.

Recommended for you

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.