Protein could prevent brain damage caused by stroke

March 20, 2017
A blood clot forming in the carotid artery. Credit: copyright American Heart Association

A small protein that could protect the brain from stroke-induced injury has been discovered by researchers from The University of Queensland and Monash University.

UQ Institute for Molecular Bioscience researcher Professor Glenn King, who led the research, said the small protein showed great promise as a future treatment.

"We believe that we have, for the first time, found a way to minimise the effects of after a stroke," Professor King said.

"The small protein we discovered, Hi1a, blocks acid-sensing ion channels in the brain, which are key drivers of brain damage after stroke.

"During preclinical studies, we found that a single dose of Hi1a administered up to eight hours after stroke protected brain tissue and drastically improved neurological performance.

"This world-first discovery will help us provide better outcomes for by limiting the brain damage and disability caused by this devastating injury."

Stroke claims six million lives worldwide each year, and five million survivors are left with a permanent disability.

Professor King said he hoped this discovery could radically improve outcomes for .

"One of the most exciting things about Hi1a is that it provides exceptional levels of protection for eight hours after stroke onset, which is a remarkably long window of opportunity for treatment," he said.

"Hi1a even provides some protection to the core region most affected by oxygen deprivation, which is generally considered unrecoverable due to the rapid cell death caused by stroke.

"We are now working to secure financial support to fast-track this promising stroke therapy towards clinical trials."

This research was published overnight in Proceedings of the National Academy of Sciences.

It involved scientists from UQ's Institute for Molecular Bioscience, School of Biomedical Sciences, Queensland Brain Institute, and Centre for Advanced Imaging; and Monash University's Biomedical Discovery Institute and Department of Pharmacology.

Explore further: New drug limits and then repairs brain damage in stroke

More information: Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1614728114

Related Stories

New drug limits and then repairs brain damage in stroke

November 25, 2016
Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage.

11 percent of stroke survivors struggle with epilepsy

December 5, 2016
(HealthDay)—More than one in 10 stroke survivors develop epilepsy, and the greater the brain damage caused by stroke, the higher the risk of seizures, a new study reports.

Scientists make surprising finding in stroke research

March 16, 2015
Scientists at The University of Manchester have made an important new discovery about the brain's immune system that could lead to potential new treatments for stroke and other related conditions.

Stroke-like brain damage is reduced in mice injected with omega-3s

August 22, 2016
Researchers from Columbia University Medical Center (CUMC) found that omega-3 fatty acids reduced brain damage in a neonatal mouse model of stroke.

Early intervention in brain inflammatory pathways may improve stroke recovery

November 28, 2016
Intracerebral hemorrhage is a type of stroke characterized by the rupture of a blood vessel within the brain. When the brain is exposed to blood, local immune cells become activated, triggering inflammation that promotes ...

CT measures can accurately identify stroke onset

November 19, 2016
(HealthDay)—Computed tomography (CT) can measure brain water uptake, which can be used to identify stroke patients with symptom onset within 4.5 hours, according to a study published online Nov. 7 in the Annals of Neurology.

Recommended for you

Could this protein protect people against coronary artery disease?

November 17, 2017
The buildup of plaque in the heart's arteries is an unfortunate part of aging. But by studying the genetic makeup of people who maintain clear arteries into old age, researchers led by UNC's Jonathan Schisler, PhD, have identified ...

New model estimates odds of events that trigger sudden cardiac death

November 16, 2017
A new computational model of heart tissue allows researchers to estimate the probability of rare heartbeat irregularities that can cause sudden cardiac death. The model, developed by Mark Walker and colleagues from Johns ...

Popular e-cigarette liquid flavorings may change, damage heart muscle cells

November 16, 2017
Chemicals used to make some popular e-cigarette liquid flavorings—including cinnamon, clove, citrus and floral—may cause changes or damage to heart muscle cells, new research indicates.

Possible use for botulinum toxin to treat atrial fibrillation

November 16, 2017
From temporarily softening wrinkles to easing migraines, botulinum toxin has become a versatile medical remedy because of its ability to block nerve signals that can become bothersome or risky.

Proteome of the human heart mapped for the first time

November 15, 2017
A healthy heart beats about two billion times during a lifetime, thanks to the interplay of more than 10,000 proteins. Researchers from the Max Planck Institute of Biochemistry (MPIB) and the German Heart Centre at the Technical ...

First transcatheter implant for diastolic heart failure successful

November 15, 2017
Results presented today at the American Heart Association Scientific Sessions and published in Circulation show that a new device designed to treat diastolic heart failure is safe and effective. The first patient in the randomized, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.