Mosquito brain atlas aims to reveal neural circuitry of behavior

March 6, 2018, Howard Hughes Medical Institute
Mosquito brain atlas aims to reveal neural circuitry of behavior
Using the Mosquito Brain Browser at mosquitobrains.org, users can select and view distinct regions (different colors) of the female Aedes aegypti brain. Credit: Meg Younger and Nick Didkovsky

A mosquito's head is about the size of a pencil tip, but it packs a dangerous punch: it is the delivery system for malaria, yellow fever, and Zika, among other blood-borne diseases. In most mosquito species, females are the more dangerous sex. They're the ones drinking—and transferring—blood.

Now, for the first time, researchers have built an atlas of the 's brain. The resource, freely available at mosquitobrains.org, lays out a brain map that may ultimately help reveal the circuitry that motivates female mosquitoes to bite.

"We are trying to build the field of mosquito neurobiology," says Howard Hughes Medical Institute (HHMI) Investigator Leslie Vosshall, who led the work. She hopes that the new atlas will let mosquito researchers from all over the world share data and better understand which parts of the mosquito brain drive different behaviors.

"Somewhere in that female brain is the drive to sense humans, fly toward humans, land on humans, and bite and drink the blood of humans," says Vosshall, a neurobiologist at The Rockefeller University. "Somewhere in that brain is where decision making, motivation, and hunger reside."

While male mosquitoes are strictly vegetarian, females bite and feed on humans and other animals to provide nutrients for developing eggs. But no one knows what parts of the brain drive this biting behavior—or any behavior, Vosshall says. To help answer this question, researchers first need a map that lays out how mosquitoes' roughly 100,000 wire together. So about a year ago, Vosshall and colleagues set out to make one: they began painstakingly staining and photographing brains from dozens of female Aedes aegypti mosquitoes.

In this visualization of the female mosquito brain, individual areas appear one at a time. Researchers will be able to superimpose different mosquito behaviors onto this neural atlas at mosquitobrains.org. Credit: Meg Younger/Howard Hughes Medical Institute/The Rockefeller University

Meg Younger, a postdoctoral fellow in Vosshall's lab who spearheaded the project, stitched each picture together, averaging out the subtle idiosyncrasies of individual brains to generate a representative atlas. The atlas describes the location of groups of neurons within the brain—like giving them a home address. In the past, researchers had a vague idea of where certain neurons resided, Vosshall says, "but now they can map it pretty exactly using this website."

With the resource available online, scientists can superimpose their data onto the reference brain and see how the neurons they're studying relate to those being studied by other groups. "People can see immediately at a glance how these different sets of neurons relate to each other," Vosshall says.

Researchers can also layer the functions of onto the reference brain, helping map out the circuitry of different behaviors, such as how mosquitoes sense odors. Understanding why choose to bite certain people may eventually help researchers develop new tools to reduce the spread of mosquito-borne diseases.

Next, Younger says, the team wants to develop a reference brain for the male mosquito. Because females bite and males don't, understanding how the brains of the two sexes differ could provide even more insights into behavior.

HHMI Investigator Leslie Vosshall lets a mosquito feed on her in the mosquito room at The Rockefeller University. Credit: Alex Wild, used by permission

The development of a brain atlas in other insect species has proved invaluable for understanding which neurons are involved in different behaviors. In fruit flies, for example, researchers at HHMI's Janelia Research Campus have identified neurons in the fruit fly that are linked to walking, wing grooming, and even aggression.

"We hope that mosquitobrains.org will be the engine that allows mosquito biologists to understand the neural basis of mosquito ," Younger says. She thinks the tool could be a new driver for collaboration.

Explore further: A new way to thwart disease-spreading mosquitoes

Related Stories

A new way to thwart disease-spreading mosquitoes

January 29, 2018
(HealthDay)—It sounds like science fiction, but researchers say they have taken the first step toward creating female mosquitoes that don't bite and spread disease.

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.