Investigators identify neural circuit, genetic 'switch' that maintain memory precision

March 12, 2018, Massachusetts General Hospital
A molecular switch identified by Mass. General Hospital researchers can increase the number of contacts between dentate gyrus cells (green) and CA3 interneurons (red) in the hippocampus, which may improve memory precision in adulthood and aging. Credit: Nannan Guo, PhD, Sahay Lab, Center for Regenerative Medicine, Massachusetts General Hospital

Investigators from the Massachusetts General Hospital (MGH) Center for Regenerative Medicine and the Harvard Stem Cell Institute (HSCI) have identified a neural circuit mechanism involved in preserving the specificity of memories. They also identified a genetic 'switch' that can slow down memory generalization—the loss of specific details over time that occurs in both age-related memory impairment and in post-traumatic stress disorder, in which emotions originally produced by traumatic experiences are elicited in response to innocuous cues that have little resemblance to the traumatic memory.

"The circuit mechanism we identified in mice allows us to preserve the precision or the details of memories over the passage of time in adult as well as aged animals," says Amar Sahay, Ph.D., of the MGH Center for Regenerative Medicine and HSCI, corresponding author of a paper appearing in Nature Medicine. "These findings have implications for the generalization of in PTSD and for memory imprecision in aging."

Memories are generated in the seahorse-shaped brain structure called the hippocampus and stored in the prefrontal cortex at the front of the brain. Memory formation involves cells in a portion of the hippocampus called the , and memories are thought to be conveyed to the via the CA subregions of the hippocampus, specifically subregions CA3 and CA1. The hippocampus also is believed to play a continuing role in the stabilization of memories in the cortex—maintaining the precise details that keep one memory from being confused with another and preventing issues ranging from not being able to remember dinner selections from a week ago to age-related memory issues.

Hyperactivity of this hippocampal circuitry has been observed in aged animals—rodents, non-human primates and humans—and alterations in hippocampal structure are seen in patients with PTSD. The current study was designed to investigate the hypothesis that inhibitory signals passing from dentate gyrus cells (DGCs) to the CA3 subregion help to constrain hyperactivity and maintain the stability and precision of memories over time.

A key finding by Sahay's team was identification of a protein called abLIM3—highly expressed in DGCs but absent in the CA field of mouse brains—that acts as a molecular brake on the inhibitory signals DGCs exert onto the CA3 subregion. Experimental manipulation of abLIM3 levels in DGCs in adult mice revealed that decreasing abLIM3 levels increased the delivery of inhibitory signals to CA3 neurons. A series of experiments with mouse models showed that manipulation of abLIM3 levels within DGCs could slow down the process of memory generalization.

Using a classical behavioral conditioning protocol, the investigators first trained the animals to expect an unpleasant sensation, a mild but not painful foot shock, in a particular context, such as being placed into a box with dark walls. Typically, when animals are placed in the same context, they will 'freeze' in expectation of the shock but will do not react to a context not associated with the shock, such as a box with light walls. But after two weeks, the memory will generalize and the animals will 'freeze' when place in any context, even one with little resemblance to that in which they received the foot shock.

In contrast, decreasing abLIM3 levels within DGCs maintained the specificity of the memory over time so that, even two weeks later, the mice would only freeze when placed into the foot-shock associated context. The investigators also found that decreasing abLIM3 levels in aged mice reversed age-related alterations in DGC-CA3 circuitry and improved memory precision. A recent study by another group found significantly increased abLIM3 levels in the circulation of aged humans who are beginning to show signs of memory impairment.

"Our ability to improve precision in both adult and aged mice by essentially 'flipping a genetic switch' suggests that targeting abLIM3 expression in DGCs may lead to similar improvement in aged humans, a strategy we are actively pursuing," says Sahay, who is an associate professor of Psychiatry at Harvard Medical School and principal faculty of the Harvard Stem Cell Institute. "Since overgeneralization of traumatic memories is a hallmark of PTSD, we are also keen to assess abLIM3 levels in patients with PTSD and investigate whether reducing abLIM3 expression could prevent the activation of traumatic memories."

Explore further: Researchers identify new mechanisms by which new neurons sharpen memories

More information: Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization, Nature Medicine (2018). nature.com/articles/doi:10.1038/nm.4491

Related Stories

Researchers identify new mechanisms by which new neurons sharpen memories

September 1, 2016
When it comes to the billions of neurons in your brain, what you see at birth is what get—except in the hippocampus. Buried deep underneath the folds of the cerebral cortex, neural stem cells in the hippocampus continue ...

Neuroscientists discover a cellular pathway that encodes memories by strengthening specific synapses

February 8, 2018
MIT neuroscientists have uncovered a cellular pathway that allows specific synapses to become stronger during memory formation. The findings provide the first glimpse of the molecular mechanism by which long-term memories ...

Neurons can be reprogrammed to switch the emotional association of a memory

October 24, 2014
Memories of experiences are encoded in the brain along with contextual and emotional information such as where the experience took place and whether it was positive or negative. This allows for the formation of memory associations ...

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Fear memories made too quickly may be at heart of memory disorders

March 16, 2017
Research by neuroscientists at UTS, the University of Sydney and the Garvan Institute has revealed a new insight into fear memories that might help to explain how disorders such as post-traumatic stress disorder (PTSD) arise ...

Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013
The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, ...

Recommended for you

Classifying brain microglia: Which are good and which are bad?

December 6, 2018
Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem ...

Friend or foe? Brain area that controls social memory also triggers aggression

December 5, 2018
Columbia scientists have identified a brain region that helps tell an animal when to attack an intruder and when to accept it into its home. This brain area, called CA2, is part of the hippocampus, a larger brain structure ...

How the brain hears and fears

December 5, 2018
How is it that a sound can send a chill down your spine? By observing individual brain cells of mice, scientists at Cold Spring Harbor Laboratory (CSHL) are understanding how a sound can incite fear.

Adding new channels to the brain remote control

December 5, 2018
By enabling super-fast remote control of specific cells, light-activated proteins allow researchers to study the function of individual neurons within a large network—even an entire brain. Now one of the pioneers of 'optogenetics' ...

Microbial-based treatment reverses autism spectrum social deficits in mouse models

December 4, 2018
An unconventional approach has successfully reversed deficits in social behaviors associated with autism spectrum disorders (ASD) in genetic, environmental and idiopathic mouse models of the condition. Researchers at Baylor ...

'Error neurons' play role in how brain processes mistakes

December 4, 2018
New research from Cedars-Sinai has identified neurons that play a role in how people recognize errors they make, a discovery that may have implications for the treatment of conditions including obsessive-compulsive disorder ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.