A neuron can cause a domino effect

March 2, 2018, Technical University Munich
A neuron can cause a domino effect
Genetic model fly Drosophila melanogaster was investigated for the current study by Professor Grunwald Kadows' research group on how the odor of animals ages. Credit: Ariane Böhm / TUM

Loss of the sense of smell can indicate a neural disease like Alzheimer's or Parkinson's disease. However, contrary to previous belief, degenerations in the nervous system do not play a leading role in the loss of the sense of smell with increasing age. Rather, individual nerve cells or classes of nerves are responsible.

Some nerve cells () or neuron classes in the brain seem to age faster than others. For example, the loss of the is one of the first clinical signs of natural aging. This can be accompanied by a neurodegenerative disease such as Alzheimer's.

"Age is the major risk factor for Alzheimer's or Parkinson's disease," says Prof. Ilona Grunwald Kadow from the School of Life Sciences at the Technical University of Munich (TUM). "Only a small proportion of these diseases are due to known genetic reasons". The question is why do some neurons age faster than others. Why are some more sensitive? And is the damage to certain types of neurons the reason why entire nerve networks fail to function properly?

A new study conducted under the direction of Prof. Grunwald Kadow now shows how the olfactory capacity of the fruit fly ages, and how much this resembles the aging process in the human olfactory system. Like humans, the fruit fly loses its powers of smell as it ages. Several key genes and mechanisms were identified that contribute to this aging-associated degeneration.

In the next step, the scientists examined whether all or only specific neurons of the olfactory circuit were affected. The team found that some neurons are more sensitive than others, and decline faster during aging. They determined that oxidative stress alters specific neuron types, causing the gradual collapse of neural network function. Oxidative stress causes the accumulation of reactive oxygen compounds in the cells or tissue, which can cause temporary or permanent damage and accelerated aging.

Interestingly, the prevention of these reactive oxygen compounds in only this type of neuron completely stopped the loss of sense of smell. Old flies sensed odors as well as their young conspecifics. This suggests that age-related degeneration could be significantly delayed by preventing oxidative damage in only one or a few neuron types.

A trial with the antioxidant resveratrol in younger flies over several weeks showed that it can counteract , which develops during aging. This treatment appeared to protect particularly sensitive neurons and thereby contributed to maintaining their function within the . In the elderly, such treatments might help to delay the onset of neurodegenerative diseases associated with aging.

Another possible factor that could play a role in the aging process is the intestinal microbiome. It could be involved in the progression of Parkinson's . Grunwald Kadow and her team have therefore also tested the effect of specific microbiota on olfactory aging in with the result that certain bacteria have a positive effect and slow down olfactory neurodegeneration.

Prof. Grunwald Kadow says these findings and ongoing experiments in the fruit fly model could pave the way for more targeted treatments and therapies.

Explore further: New PET imaging technique may help monitor neurological disease progression

More information: Ashiq Hussain et al, Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila, eLife (2018). DOI: 10.7554/eLife.32018

Related Stories

New PET imaging technique may help monitor neurological disease progression

January 23, 2017
Olfactory neurons in the nasal cavity are the primary source of our sense of smell. Unlike many types of neurons, olfactory neurons are continuously generated throughout the adult lifespan. This uniquely high rate of neuronal ...

It's not just what you eat, it's what's eating you

August 2, 2017
Restricting how much you eat without starving has been shown to robustly extend lifespan in more than 20 species of animals including primates. How this works is still unclear. In a new study published in PLOS Genetics, neuroscientists ...

Fruit fly breakthrough may help human blindness research

December 18, 2017
For decades, scientists have known that blue light will make fruit flies go blind, but it wasn't clear why. Now, a Purdue University study has found how this light kills cells in the flies' eyes, and that could prove a useful ...

When the nose doesn't know: Can loss of smell be repaired?

December 4, 2017
Researchers at Tufts University School of Medicine, led by Dr. James E. Schwob, are examining the behavior of adult stem cells within the context of aging and, specifically, the sense of smell. As part of the normal aging ...

Researcher finds elderly lose ability to distinguish between odors

November 10, 2011
Scientists studying how the sense of smell changes as people age, found that olfactory sensory neurons in those 60 and over showed an unexpected response to odor that made it more difficult to distinguish specific smells, ...

Recommended for you

Flow of spinal fluid disrupted in inherited developmental disorder

March 22, 2018
Scientists have pinpointed the mechanism behind hydrocephalus, an accumulation of cerebrospinal fluid around the brain, in an inherited developmental disorder called Noonan syndrome.

Obesity trigger identified within the human gut

March 22, 2018
The key chemical for happiness and sadness, serotonin, is also a force in our body's weight gain and calorie control, and scientists say more research could reduce obesity rates.

New wearable brain scanner allows patients to move freely for the first time

March 21, 2018
A new generation of brain scanner, that can be worn like a helmet allowing patients to move naturally whilst being scanned, has been developed by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham ...

International team confirms new genetic mutation link to amyotrophic lateral sclerosis

March 21, 2018
Kinesin family member 5A (KIF5A), a gene previously linked to two rare neurodegenerative disorders, has been definitively connected to amyotrophic lateral sclerosis (ALS) by an international team from several of the world's ...

New ALS gene points to common role of cytoskeleton in disease

March 21, 2018
An international team of researchers led by John Landers, PhD, at UMass Medical School, and Bryan Traynor, MD, PhD, at the National Institute on Aging at the National Institutes of Health (NIH), has identified KIF5A as a ...

Neuroscientists develop potential tools for the study of brain function

March 21, 2018
A team of University of Missouri neuroscientists are inching closer to developing the tools needed to decipher the brain. In 2015, the team received a National Science Foundation Early Concept Grant for Exploratory Research ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.