When the nose doesn't know: Can loss of smell be repaired?

December 4, 2017, Tufts University
When the nose doesn't know: Can loss of smell be repaired?
On the left: minimal development after transplant. Right: transplanted cells generated all cell types of the nasal tissue. Credit: Jim Schwob and Brian Lin in Cell Stem Cell

Researchers at Tufts University School of Medicine, led by Dr. James E. Schwob, are examining the behavior of adult stem cells within the context of aging and, specifically, the sense of smell. As part of the normal aging process, older adults frequently experience a decline in their olfactory function, resulting in a compromised or complete loss of sense of smell. The loss of sense of smell—whether as a result of aging, medication, illness or injury—affects sense of taste; when the sense of smell is intact, it combines with the sense of taste to communicate the flavor of food. Smell loss in older adults reduces quality of life, compromises nutritional status, and puts the health and safety of the elderly at risk.

The focus of the research at Tufts is on enlarging the population of that maintain the sense of smell in young , but which deteriorate with aging. The ultimate goal is to identify a pharmaceutical preparation that has that effect.

In a study published in the December 7 issue of Cell Stem Cell, the researchers provide the first evidence that it is possible to regenerate stem cells of the nasal tissue in mice, thus enlarging the population of adult stem cells.

Stem cells are undifferentiated, or unspecialized; they are highly potent and able to generate many different types of cells. Embryonic stem cells can give rise to any cell type in the body, while adult or tissue stem cells have a more limited potency. Adult stem cells are responsible for maintaining the structure of the tissue in which they are found and repairing it after injury. There is evidence that adult stem cells may be able to regenerate in response to injury to tissue as part of a natural healing process.

The team took advantage of that natural healing process. Adult stem cells regenerated in mice with injured nasal tissue. When those adult stem cells were transplanted into other mice, they were able to regenerate all the different cell types in the nasal tissue, also called the . This expansion of the stem cell population improved when the researchers swabbed a pharmaceutical preparation into the nose; the drug combination pushed progenitor cells to remain upstream as adult stem cells.

Though the response involved the now-famous Yamanaka factors, the strategy developed by Schwob and his team is more efficient and less complicated than the induced (iPSC) Nobel Prize-winning approach developed by Dr. Shinya Yamanaka. Yamanaka's approach was designed to replace stem cells lost to aging by inducing cells taken from adult tissues to behave like embryonic stem cells, by forcing them to express four genes that are usually expressed in .

The research team from Tufts determined that only two of the four factors used by Yamanaka to artificially reprogram into iPSCs are critical to the process of pushing the to become more stem cell-like.

"We are the first researchers to gain insight into the molecular mechanism responsible for allowing these adult progenitor cells to become more potent. We were intrigued that the process shared such a core similarity with iPSC technology, which provides a potential explanation and natural origin for the mechanism that the scientific community has harnessed to great effect," said first author Brian Lin, a Ph.D. graduate of the Sackler School of Graduate Biomedical Sciences at Tufts and now a postdoctoral fellow at Mass General Hospital.

"The direct restoration of adult stem has implications for many types of degeneration associated with aging, though we are several years away from designing actual therapies based on this work. The olfactory epithelium is a singularly powerful model for understanding how tissues regenerate or fail to do so," said senior author Jim Schwob, M.D./Ph.D., a professor of Developmental, Molecular & Chemical Biology at Tufts University School of Medicine in Boston.

"If we can restore the population of in the olfactory epithelium by regenerating them or by administering the right drug as a nasal spray, we may be able to prevent deterioration in the sense of smell," he continued.

Explore further: Inflammation required for olfactory tissue regeneration

More information: Brian Lin et al, Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency, Cell Stem Cell (2017). DOI: 10.1016/j.stem.2017.09.008

Related Stories

Inflammation required for olfactory tissue regeneration

August 30, 2017
In a mouse study designed to understand how chronic inflammation in sinusitis damages the sense of smell, scientists at Johns Hopkins say they were surprised to learn that the regeneration of olfactory tissue requires some ...

Neuroscientists find genetic trigger that makes stem cells differentiate in nose epithelia

December 7, 2011
University of California, Berkeley, neuroscientists have discovered a genetic trigger that makes the nose renew its smell sensors, providing hope for new therapies for people who have lost their sense of smell due to trauma ...

Expression of pluripotency-associated gene marks many types of adult stem cells

October 6, 2011
Investigators at the Massachusetts General Hospital (MGH) Center for Regenerative Medicine and the Harvard Stem Cell Institute (HSCI) have found that Sox2 – one of the transcription factors used in the conversion of ...

Stem cell therapy trial at Sanford first of its kind in US for shoulder injuries

January 4, 2017
The first FDA-approved clinical trial of its kind in the United States using a person's own fat-derived adult stem cells to treat shoulder injuries is available at Sanford Health.

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.