A certain type of neurons is more energy efficient than previously assumed

March 15, 2018, Institute of Science and Technology Austria
GABAergic interneuron studied by the researchers. Color code indicates energy efficiency of the neuron. Credit: Peter Jonas

A contradiction about how a type of neurons generates signals has been resolved by researchers at the Institute of Science and Technology (IST) Austria. Writing in Neuron, Professor Peter Jonas and first author Hua Hu explain the observation of fast-spiking, parvalbumin-expressing GABAergic interneurons sending trains of rapid, energy-expensive signals, though only a limited energy supply reaches the brain.

PV+-BCs are important in higher microcircuit functions, such as pattern separation, i.e., making similar patterns of neural activity more distinct. This allows researchers to distinguish between similar experiences. Previously, Jonas and Hu showed that the fast signaling achieved by these neurons is key to fulfil these microcircuit functions. PV+-BCs neurons generate high-frequency salvos of very brief action potentials (APs), or nerve impulses.

Short APs are considered expensive, as the fluxes of sodium (Na+) and potassium (K+) ions involved are thought to overlap in time. In an action potential, Na+- and K+-gated ion channels in the neuron open and close. Na+ channels open at the beginning of the AP, allowing Na+ to move into the axon, which causes depolarization. Repolarization of the membrane occurs when K+ channels open and K+ moves out of the axon. The AP travels down the axon toward the axon terminal, where it signals to other neurons via the synapse. The ion fluxes during APs dissipate ion gradients, and energy is needed to re-establish these gradients. During short APs such as those in PV+-BCs neurons, Na+ and K+ fluxes are thought to extensively overlap. Such ion fluxes in opposite direction do not contribute to the actual AP, but nevertheless take energy to reverse.

The combination of short spikes and their high frequency in PV+-BCs neurons could pose a major challenge to the brain's energy budget. Jonas and Hu investigated how the signaling properties of PV+-BCs neurons can be reconciled with the limited energy supply to the brain. Surprisingly, this theoretical contradiction does not translate to reality. "Scientists always tend to be disappointed when theory and experiment do not match. But this project is a beautiful example that we can learn much more from mismatches than from perfect agreements," says Peter Jonas.

Studying functioning neurons is the only way to obtain the desired information, and the researchers therefore used brain slices to examine the axon of firing PV+-BCs, where APs are initiated and propagate. To obtain direct information from the axon, they used a technique called subcellular patch-clamp recording, or "nanophysiology." They found that the energy required to generate the characteristic APs is only 1.6 times the theoretical minimum. Thus, APs in PV+-BCs are surprising energy efficient.

How can PV+-BCs neurons be energy efficient, but still signal rapidly? Hu and Jonas found that the specialized ion channels in PV+-BCs are gated to optimize both fast signaling and energy efficiency. Na+ channels in PV+-BCs axons are inactivated very rapidly, while the Kv3-type K+ channels are activated with a delay. This complementary tuning minimizes the overlap between Na+ and K+ currents during brief APs and optimizes signaling, so that it is both fast and energy efficient. "Making the model increasingly more realistic, we found that fast signaling and high energy efficiency can be reconciled. This resolves a major contradiction," Peter Jonas explains. Knowledge gained from such live recordings will help to further refine models of neuronal signaling and to better understand mechanisms underlying brain diseases.

Explore further: Fast and reliable: New mechanism for speedy transmission in basket cells discovered

More information: "Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons" , Neuron, DOI: 10.1016/j.neuron.2018.02.024

Related Stories

Fast and reliable: New mechanism for speedy transmission in basket cells discovered

March 24, 2014
In his third major research paper since December 2013, IST Austria Professor Peter Jonas together with his collaborator, postdoc Hua Hu, identifies a new subcellular mechanism for reliable, fast transmission in the so-called ...

Researchers define function of an enigmatic synaptic protein

November 21, 2017
In the brains, neurons communicate by sending chemical signals across synapses. The molecular machinery required to send a signal involves not only the neurotransmitter signal itself, but a large variety of other proteins ...

Glaucoma study finds brain fights to preserve vision

February 23, 2018
A team of researchers, led by David Calkins, Ph.D., vice chair and director of Research at the Vanderbilt Eye Institute, has made a breakthrough discovery in the field of glaucoma showing new hopes for treatments to preserve ...

'Simple, but powerful' model reveals mechanisms behind neuron development

December 18, 2017
All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron ...

Loose coupling between calcium channels and sensors

February 6, 2014
In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling between calcium ...

Scientists find sensor that makes synapses fast

January 17, 2017
Synapses, the connections between neurons, come in different flavors, depending on the chemical they use as transmitter. Signal transmitters, or neurotransmitters, are released at the synapse after calcium ions flow into ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.