In pursuit of pleasure, brain learns to hit the repeat button

March 1, 2018, Columbia University
Credit: CC0 Public Domain

In a scientific first, researchers have observed in mice how the brain learns to repeat patterns of neural activity that elicit the all-important feel-good sensation. Until today, the brain mechanisms that guide this type of learning had not been measured directly.

This research offers key insights into how activity is shaped and refined as animals learn to repeat behaviors that evoke a feeling of pleasure. The findings also point to new strategies for targeting disorders characterized by abnormal repetitive behaviors, such as addiction and obsessive-compulsive disorder, or OCD.

The study, led by researchers at Columbia University's Zuckerman Institute, the Champalimaud Centre for the Unknown and the University of California at Berkeley, was published today in Science.

"It's no secret that we derive pleasure from doing things we enjoy, such as playing our favorite video game," said Rui Costa, DVM, PhD, the paper's senior author and the associate director and CEO of Columbia's Zuckerman Institute. "Today's results reveal that the brain learns which activity patterns lead to feel-good sensations, and reshapes itself to more efficiently reproduce those patterns."

"This discovery can help explain how we learn by repetition, and can also inform studies of disorders such as addiction and OCD, in which the feedback loop that links an action to a reward gets thrown out of whack," he added.

Normally, doing something enjoyable triggers neurons, a type of brain cell, to release a chemical called dopamine. This release causes that feel-good sensation, evoking the desire to repeat an action again and again. A prime example of this are video games.

"When you move the game controller in exactly the right way to earn that high score, your brain remembers how it executed that action—which neurons get switched on, and in what pattern—so your brain can recreate that same move the next time you play," said Dr. Costa, who also a professor of neuroscience and neurology at Columbia University Irving Medical Center. "After repeated attempts, your brain gets better at recreating that pattern of , and you get better at the game."

To the team, this fact then begged the question: Could the brain be trained to learn the right pattern of neural activity normally involved in experiencing something enjoyable, and then replay that pattern at will to trigger a ?

In a series of experiments in mice, the researchers developed a computer program that connected the neural activity in the animals' brains to musical notes, so that when one group of neurons switched on, a corresponding musical note played. Different patterns of neural activity yielded different combinations of notes. And when neural-activity patterns triggered the right arrangement of musical notes (arbitrarily determined by a computer), the scientists manually released dopamine in the animals' brains.

The mice quickly learned which musical arrangement that, when played, caused a dopamine release and the feel-good sensation. Their brains then began to rewire themselves to play that song more often, thereby triggering the pleasure hit of dopamine.

"In essence, the mice learned to repeat the same pattern of that had been evoked previously by hearing those ," said Vivek Athalye, a doctoral candidate at Champalimaud and the paper's co-first author.

The researchers noted that these findings are a striking example of Thorndike's Law—a long-held principle of psychology stating that actions that lead to positive reinforcement are repeated more frequently. However, these findings likely represent the first time that this principle has been directly observed in the brain.

"In some ways, these results are entirely expected," said Dr. Costa. "It makes sense that the brain would mimic the feeling of reward it gets from an enjoyable experience by producing the corresponding pattern of neural activity. But it had never been tested."

This research also has important implications for addiction and OCD.

"If the brain's neural-activity patterns are in overdrive, as is often the case for people with addiction or OCD, could we create a computer program that can help to retrain their brains and downshift this activity?" asked Dr. Costa. "This is something we're actively exploring."

Explore further: Hidden deep in the brain, a map that guides animals' movements

More information: "Evidence for a neural law of effect," Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aao6058

Related Stories

Hidden deep in the brain, a map that guides animals' movements

August 30, 2017
New research has revealed that deep in the brain, in a structure called striatum, all possible movements that an animal can do are represented in a map of neural activity. If we think of neural activity as the coordinates ...

Body movements just need a 'puff' of dopamine to get started

January 31, 2018
From morning til night, we never stop executing movements at the right time and speed. But patients suffering from Parkinson's disease lose this natural control over their voluntary movements.

System identifies music selections via brain scanning

February 2, 2018
It may sound like science fiction, but mind-reading equipment is much closer to reality than most people realize. A new study carried out at D'Or Institute for Research and Education used magnetic resonance imaging (MRI) ...

From brouhaha to coordination: Motor learning from the neuron's point of view

February 9, 2017
When starting to learn to play the piano, there is much hesitation and hitting the wrong keys. But with training, the movements of the player become more fluid and accurate. This motor improvement begins in the brain, but ...

Songbirds may hold the secret to how babies learn to speak

December 19, 2017
The explanation for how people learn complex behaviors, such as speech, might be found in a new study of songbirds by scientists at the USC Dornsife College of Letters, Arts and Sciences.

Mouse studies offer new insights about cocaine's effect on the brain

February 15, 2017
Cocaine is one of the most addictive substances known to man, and for good reason: By acting on levels of the "feel-good" chemical dopamine, it produces a tremendous sensation of euphoria.

Recommended for you

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

The richer the reward, the faster you'll likely move to reach it, study shows

December 11, 2018
If you are wondering how long you personally are willing to stand in line to buy that hot new holiday gift, scientists at Johns Hopkins Medicine say the answer may be found in the biological rules governing how animals typically ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.