Researchers reveal how brain circuits are affected by infections in mothers and newborns

March 28, 2018, McLean Hospital
Credit: CC0 Public Domain

McLean Hospital neuroscientists have found that immune system activation during pregnancy and right at birth can cause alterations in the brain's neural circuits during young adulthood that are consistent with behavioral symptoms common in autism spectrum disorder (ASD) and other developmental conditions. The detailed findings are available in the March 28, 2018, issue of the Journal of Neuroscience.

"Mounting evidence suggests that , such as prenatal viral infections and postnatal bacterial infections, can impact later-life development in humans," said Vadim Bolshakov, PhD, director of the Cellular Neurobiology Laboratory at McLean Hospital and co-senior author of the paper. "While previous studies at McLean and elsewhere have focused on the produced by such immune activation, this study goes deeper, going to the cellular level to show how the brain's are affected."

"Previous studies have helped demonstrate the types of things that can happen behaviorally as a result of ," added Bill Carlezon, PhD, chief of the Division of Basic Neuroscience at McLean Hospital, and co-senior author of the paper. "This research, however, is distinguishable in that it is an important step in telling us the biological basis of how these symptoms develop."

To explore the impact of immune activation on the developing brain, the researchers induced either maternal or postnatal immune activation, or gave both treatments, in groups of pregnant mice and their offspring. Pregnant mothers were treated with polycytidylic acid, a chemical that simulates the effects of a viral infection, at a time point that approximates the third trimester of pregnancy in humans. The offspring were treated with a lipopolysaccharide (LPS), a chemical that simulates a bacterial infection and causes a temporary (1-3 day) activation of the immune system. The LPS was given at a time point that approximates the stage of brain development in humans right at the time of birth, thus mimicking the development of a bacterial infection during delivery.

Long after the treatments were applied, during a time point in mice that approximates in humans, the investigators examined the impact of the simulated infections on the brain, comparing their results to those from mice that had received inactive injections. Focusing on the neural pathway from the brain's prefrontal cortex to the amygdala, they combined optogenetics—a technique that uses light to control the of neurons in living tissue—with behavioral testing, a methodology that allows researchers to study functional connections between different regions of the brain. Behaviorally, the researchers found a strong connection between immune activation and symptoms of enhanced anxiety-like behavior and decreased social interactions. Correspondingly, they found that neural circuits in the brain that contribute significantly to the control of anxiety and social interactions were significantly affected in the immune-activated mice.

While the group that received the combined maternal and postnatal treatment showed the largest behavioral effects, electrophysiology tests easily distinguished the pathway effects in each of the four treatment groups. According to Bolshakov, Carlezon, and fellow study researcher Yan Li, PhD, this ability to definitively detect and distinguish electrophysiological changes suggests that this study's methodology provides a stronger link between immune activation and brain disorders versus studying behavioral effects alone.

"The results are novel, as this sensitive and comprehensive testing has revealed how prenatal and early postnatal immune activation may regulate core behavioral signs associated with ASD and certain other developmental disorders through changes in signal flow between different structural components of behavior-driving neural circuits," said Bolshakov. "These findings may be of a significant translational value, as they provide important clues to understanding the mechanisms of these disorders and potentially their treatment."

Explore further: Newborn immune activation may have long-term negative impact on brain function

Related Stories

Newborn immune activation may have long-term negative impact on brain function

January 12, 2018
McLean Hospital neuroscientists have found that even a brief episode of immune system activation within days of birth can cause persistent changes in sleep patterns concurrent with increases in epilepsy-like brain activity—a ...

Mom's immune system shapes baby's brain

February 26, 2018
The state of a woman's immune system during pregnancy may shape the connectivity of her child's brain, suggests a study of teenage mothers published in JNeurosci. The research emphasizes the influence of maternal health on ...

Immune system activation in pregnant women can shape brain development in their babies

February 26, 2018
A landmark study published in the Journal of Neuroscience on February 26 reveals that activation of a pregnant mother's immune system can affect her baby's brain development. A team of researchers led by Bradley Peterson, ...

Prenatal infection may alter brain development via epigenetic changes

January 24, 2017
Maternal infection during pregnancy increases the risk for psychiatric disorders in the child, but the path between the two is something of a mystery. In a study published in Biological Psychiatry, senior author Professor ...

How mom's immune system is linked to autism risk

September 23, 2013
(Medical Xpress)—Activating a mother's immune system during her pregnancy disrupts the development of neural cells in the brain of her offspring and damages the cells' ability to transmit signals and communicate with one ...

Infections during pregnancy may interfere with genes linked to prenatal brain development

March 21, 2017
If a mother picks up an infection during pregnancy, her immune system will kick into action to clear the infection - but this self-defence mechanism may also have a small influence how her child's brain develops in the womb, ...

Recommended for you

New research suggests it's all about the bass

August 15, 2018
When we listen to music, we often tap our feet or bob our head along to the beat – but why do we do it? New research led by Western Sydney University's MARCS Institute suggests the reason could be related to the way our ...

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

Scientists pinpoint brain networks responsible for naming objects

August 14, 2018
Scientists at The University of Texas Health Science Center at Houston (UTHealth) have identified the brain networks that allow you to think of an object name and then verbalize that thought. The study appeared in the July ...

SMURF1 provides targeted approach to preventing cocaine addiction relapse

August 14, 2018
A class of proteins that has generated significant interest for its potential to treat diseases, has for the first time, been shown to be effective in reducing relapse, or drug-seeking behaviors, in a preclinical study.

Helping amputees feel as though their prosthetic limb belongs to their own body

August 14, 2018
The famous idiom "seeing is believing" is not enough to help amputees with the use of their prosthetic limb. Many amputees opt out of prolonged use of their prosthetic limb because their perception of their missing limb simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.