New research sheds light on underlying cause of brain injury in stroke

March 15, 2018, University of Plymouth
Single oligodendrocyte cell in green and the myelin it produces in red. These are the structures protected by the new drug, QNZ-46. Credit: University of Plymouth

New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.

Published in Nature Communications, the study shows how identifying the source of damaging in leads to discovery of brain protection with QNZ-46, a novel form of preventative treatment with clinical potential.

Existing studies show that restricted blood supply promotes the excess release of glutamate. The glutamate binds to receptors, over-stimulating them and leading to the break-down of myelin – the protective sheath around the nerve fibre (axon).

Previous studies had focused on the brain's grey – the area where all of the synapses operate. Now the new study focuses on – the part of the brain the connects all of the grey matter together – and demonstrates that the from axons themselves contributes to damaging myelin.

The study, led by Professor Robert Fern at the Plymouth University Peninsula Schools of Medicine and Dentistry (PUPSMD), is the first direct comparison of vesicular fusion within different cellular components in white matter, and it reveals extensive fusion in axons – a mechanism previously thought to be absent from white matter.

The findings support a rational approach toward a low-impact prophylactic therapy, such as QNZ-46, to protect patients at risk of stroke and other forms of excitotoxic injury (injury caused by excess glutamate).

As stroke is the second leading cause of disability and early death in the UK, Professor Fern, part of the University's Institute of Translational and Stratified Medicine, explains the significance of the findings.

"Strokes are known to be caused by loss of blood to the brain, and there has been no way to treat the condition," he said.

"As much as rehabilitation can be effective, there's nothing you can do to heal the damage. This is why it has been necessary to look at how the problem is caused in the first place.

"Myelin damage results in severe functional deficit in the white matter of the , for example in ischemic – caused by lack of – stroke. By identifying how this happens, we have been able to show how QNZ-46 can be used to prevent the damage.

"There need to be further studies to fully understand how these findings can translate going forward, but to see that there are no negative side effects at this stage is a promising sign. By continuing further studies, we can come up with even better forms of the drug to help in stroke treatment."

Explore further: Peritoneal dialysis as an intervention for stroke patients

More information: Sean Doyle et al. Vesicular glutamate release from central axons contributes to myelin damage, Nature Communications (2018). DOI: 10.1038/s41467-018-03427-1

Related Stories

Peritoneal dialysis as an intervention for stroke patients

September 3, 2013
Ischemic stroke is characterized by an interruption of the blood supply to the brain, which can lead to brain damage and even death. Excess amounts of the excitatory neurotransmitter glutamate are released during stroke events ...

ADHD drugs increase brain glutamate, predict positive emotion in healthy people

March 14, 2018
A new study shows that healthy people who take attention deficit hyperactivity disorder (ADHD) drugs experience a surge in the neurotransmitter glutamate in key parts of the brain. And that increase in glutamate is associated ...

Glutamate imaging better than MR spectroscopy in first three hours after ischemic stroke

May 7, 2014
Glutamate imaging reveals ischemic lesions in the first 3 hours after stroke that are not distinguishable in T1-weighted and T2-weighted imaging.

New research reveals brain's protection mechanism during stroke

August 16, 2011
Neuroscientists have identified a natural protection mechanism in some of the brain's nerve cells during the onset of stroke. The findings, published today in the Journal of Neuroscience, could be used to develop treatments ...

Study shows how brain begins repairs after 'silent strokes'

December 20, 2016
UCLA researchers have shown that the brain can be repaired—and brain function can be recovered—after a stroke in animals. The discovery could have important implications for treating a mind-robbing condition known as ...

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.