Early environment may shape axon pathfinding

April 16, 2018, Society for Neuroscience
Schematic workflow of optogenetic analysis. Embryos were dechorionated and exposed to APV and 470 nm light from 1 to 3 dpf. Embryos were double-transgenic for foxP2:egfp-caax; foxP2:Gal4. Some embryos carried UAS:ChR2-YFP (determined by post-hoc genotyping). If neuronal activity could rescue pathfinding, only triple-transgenic embryos would have normal midline pathfinding (arrow). Bottom pictures show in situ c-fos analysis of experimental embryos after 470 nm light exposure. Embryos carrying ChR2-YFP have increased c-fos expression (red arrow in region of foxP2.A.2 neurons). Credit: Gao et al., eNeuro (2018)

A new mechanism regulating the early development of connections between the two sides of the nervous system has been identified in a paper published in eNeuro. The work demonstrates that neuronal activity is required for this process, a finding that may provide new insight into brain connectivity disorders such as autism.

The paths of axons in the central nervous system are laid down during . Most of them will cross the middle of the organism, while some will not. The resulting framework is critical for the connectivity that will later give rise to cognitive functions. Although axon pathfinding is under tight genetic control, the extent to which it can be influenced by environmental factors is unclear.

Addressing this question in transparent zebrafish embryos, Josh Bonkowsky and colleagues found that optogenetic stimulation of an inhibited N-methyl-D-aspartate receptor (NMDAR) was necessary for axons to properly cross the midline. Regulation of neuronal activity by the NMDAR may act through a gene implicated in brain development and neurological diseases.

This research suggests that, in addition to genetic control, in response to environmental factors—for example, the low oxygen levels experienced by premature babies—can influence the development of brain connectivity.

Explore further: Mom's immune system shapes baby's brain

More information: The Midline Axon Crossing Decision is Regulated Through An Activity-Dependent Mechanism by the NMDA Receptor, eNeuro, DOI: 10.1523/ENEURO.0389-17.2018

Related Stories

Mom's immune system shapes baby's brain

February 26, 2018
The state of a woman's immune system during pregnancy may shape the connectivity of her child's brain, suggests a study of teenage mothers published in JNeurosci. The research emphasizes the influence of maternal health on ...

New links between genetic abnormality and brain function in Huntington's disease

March 21, 2018
While the gene mutation that causes Huntington's disease has been associated with changes in certain types of functional brain connectivity, a new study that examined connectivity across the whole brain has now identified ...

New study examines relationship between emotion regulation and brain connectivity in ASD

June 21, 2017
Emotional control varies among children with autism spectrum disorder (ASD), and researchers using functional magnetic resonance imaging (fMRI) for whole brain analysis identified relationships between emotional lability ...

How developing visual system axons stay in the correct layer

December 8, 2017
Scientists at Tokyo Tech have made an important discovery concerning the development of layer-specific axonal connections in the developing visual system of Drosophila flies. This discovery provides valuable insights into ...

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Recommended for you

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

When there's an audience, people's performance improves

April 20, 2018
Often, people think performing in front of others will make them mess up, but a new study led by a Johns Hopkins University neuroscientist found the opposite: being watched makes people do better.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

MRI technique detects spinal cord changes in MS patients

April 20, 2018
A Vanderbilt University Medical Center-led research team has shown that magnetic resonance imaging (MRI) can detect changes in resting-state spinal cord function in patients with multiple sclerosis (MS).

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.