New testing provides better information for parents of children with form of epilepsy

April 26, 2018, University of Washington
Credit: CC0 Public Domain

Advances in genetic testing offer new insights to parents who have a child with a rare but serious form of epilepsy, epileptic encephalopathy (EE), found in one of about every 2,000 births and characterized by developmental disabilities as well as horrible seizures.

New ways of sequencing the human genome mean geneticists and genetic counselors have much more to say to parents who wonder if future children might carry the disease, says Dr. Heather Mefford, associate professor of pediatrics (genetic medicine) at University of Washington School of Medicine and Deputy Scientific Director of the Brotman Baty Institute for Precision Medicine, co-senior author of findings published this week in the New England Journal of Medicine.

These advances offer insights for all of us because they are part of the growing study of mosaicism - the fact that many of us do not in fact have just one genome in us. We are what scientists call mosaics - bunches of cells that may have different genotypes buried deep within us.

"A mutation happens some time after fertilization when cells are dividing, which requires copying all of the DNA. If one of those cells makes a copying error, that introduces a mutation. All the cells that come from that cell will carry the same mutation. So you end up with a mosaic pattern where some cells have the mutation and some cells don't. That's the mosaic," Mefford said.

The fact that, say, 10 percent of your cells scattered throughout your body might be different than other cells may be completely unimportant. But if 10 percent of your sperm or oocytes have the mutation, that could be a big problem if that mutation affects the brain development of the child.

A big question from any parent of a child with EE is, What are the odds that our other children might have this condition? For decades, parents whose child had epilepsy were told there's a 1 to 5 percent chance that other children might inherit the mutation. This was based on clinical evidence - the numbers of reoccurrences physicians saw in the clinic.

But armed with more precise testing, the geneticists found parental mosaicism that wasn't easily detected before in about 10 percent of families, putting these families at higher risk of passing the mutation to another child. What this means in practical terms is that this small group probably accounts for most of the reoccurrences. For some parents, there's good news: if this parental mosaicism was not detected, your odds of having another such with epilepsy could be much less than 1 percent.

"We have the technology to pick out mosaic cells in a sea of otherwise normal . The percentage of families where we can identify mosaicism in the parent is higher than most of us thought it would be. While the overall recurrence risk (across all families) is about 1 percent, for those families where we can find the mosaic mutation in the parents, it's not a 1 percent risk. It's much higher than that. And we now have the tools to help give them that information, and help them with better planning and decision-making down the road," Mefford said.

"Our study focused on patients with severe epilepsy. But the finding that 10 percent of the have mosaicism may actually apply to a broad range of other disorders, including autism and intellectual disability," Mefford added.

Explore further: Study identifies new genetic risk factor for developing autism spectrum disorder

More information: Candace T. Myers et al. Parental Mosaicism in "De Novo" Epileptic Encephalopathies, New England Journal of Medicine (2018). DOI: 10.1056/NEJMc1714579 , www.nejm.org/doi/full/10.1056/NEJMc1714579

Related Stories

Study identifies new genetic risk factor for developing autism spectrum disorder

September 1, 2017
Autism spectrum disorder affects approximately one out of every 68 children in the United States. Despite expansive study, the origin and risk factors of the complex condition are not fully understood.

Study clarifies parents as source of new disease mutations

July 31, 2014
Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

Genetic study identifies 14 new developmental disorders in children

January 25, 2017
The largest ever genetic study of children with previously undiagnosed rare developmental disorders has discovered 14 new developmental disorders. Published today in Nature, the research led by scientists at the Wellcome ...

'Missing mutation' found in severe infant epilepsy

March 20, 2018
Researchers have discovered a "missing mutation" in severe infant epilepsy—long-suspected genetic changes that might trigger overactive, brain-damaging electrical signaling leading to seizures They also found early indications ...

60 new mutations in each of us: Speed of human mutation revealed in new family genetic research

June 12, 2011
(Medical Xpress) -- Each one of us receives approximately 60 new mutations in our genome from our parents. This striking value is reported in the first-ever direct measure of new mutations coming from mother and father in ...

Recommended for you

Fruit flies: 'Living test tubes' to rapidly screen potential disease-causing human gene

May 22, 2018
It all began with one young patient; a 7-year old boy who was born without a thymus, an important organ of the immune system, and without functional immune cells. The boy also presented with cardiac and skeletal defects, ...

New brain development disorder identified by scientists

May 22, 2018
Researchers have identified a new inherited neurodevelopmental disease that causes slow growth, seizures and learning difficulties in humans.

Researchers discover cell structure that plays a role in epigenetic inheritance

May 22, 2018
We know a lot about how genes get passed from parent to child, but scientists are still unraveling how so-called epigenetic information—instructions about which genes to turn on and off—is conveyed from generation to ...

Advance genetics study identifies virulent strain of tuberculosis

May 22, 2018
LSTM's Dr. Maxine Caws is co-lead investigator on an advanced genetics study published in Nature Genetics, which has shown that a virulent strain of tuberculosis (TB) has adapted to transmit among young adults in Ho Chi Minh ...

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

New data changes the way scientists explain how cancer tumors develop

May 21, 2018
A collaborative research team has uncovered new information that more accurately explains how cancerous tumors grow within the body. This study is currently available in Nature Genetics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.