Abdominal fat secretes novel adipokine promoting insulin resistance and inflammation

May 24, 2018, Deutsches Zentrum fuer Diabetesforschung DZD
During obesity, WISP1 VAT expression and WISP1 serum levels increase. In vitro, physiological concentrations of WISP1 impair insulin action on phosphorylation of IRβ, Akt and GSK3β in myotubes and reduce insulin-mediated phosphorylation of IRβ, Akt, GSK3β and FOXO1 in hepatocytes (purple arrow downwards). WISP1 abrogates insulin-mediated induction of glycogen synthesis in myotubes (purple arrow downwards) and insulin-induced suppression of gluconeogenic gene expression (purple arrow upwards). Examined effects (solid arrow), potential effects (dotted arrow). Credit: Les Laboratoires Servier, courtesy of Servier Medical Art (https://smart.servier.com/), reproduced under the Creative Commons Attribution 3.0 France (CC BY 3.0 FR) license (https://creativecommons.org/licenses/by/3.0/fr/)

An international research team in which the DZD is participating has identified a novel adipokine that favors the development of insulin resistance and systemic inflammation. In cases of severe obesity, this adipokine is secreted by the adipocytes of the abdominal fat tissue and released into the bloodstream. The new findings could contribute to the development of alternative approaches for the treatment of diseases caused by obesity. The researchers have now published their results in the journal Diabetologia (Hörbelt et al, 2018) of the European Association for the Study of Diabetes (EASD).

More than 2.8 million people die each year due to conditions related to overweight and . Overweight and the associated metabolic syndrome increase the risk of type 2 diabetes, specific types of cancer and cardiovascular disease. Scientific findings in recent years have confirmed this increased risk. The cause of the sequelae are chronic inflammatory responses. However, the molecular mechanisms that lead to these overweight-related inflammatory processes are still largely unknown. This is the starting point for the study of the international team of scientists led by PD Dr. Natalia Rudovich (Spital Bülach; Charité - Universitätsmedizin Berlin), Prof. Dr. Margriet Ouwens (German Diabetes Center Düsseldorf) and PD Dr. Olga Pivovarova of the German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE).

The researchers showed for the first time how the protein molecule Wingless-type signaling pathway protein-1 (WISP1) directly impairs in muscle cells and in the liver and thus leads to reduced insulin sensitivity. Already in 2015, the team led by the physician Rudovich and the biologist Pivovarova identified WISP1 as another possible link between obesity and systemic inflammatory responses. WISP1 was previously associated with the regulation of bone growth, the development of certain types of cancers and pulmonary fibrosis.

The current study shows that WISP1 cancels insulin-induced inhibition of glucose production (gluconeogesis) in murine hepatocytes and glycogen synthesis in human muscle cells. The synthesis quantity of the WISP1 protein correlates with the in the oral glucose tolerance test (OGTT) and with the circulating level of heme oxygenase-1 (HO-1), an enzyme that promotes , especially in obesity (7). "We suspect that increased WISP1 production from abdominal fat could be one of the reasons why overweight people often have an impaired glucose metabolism," said first author Tina Hörbelt of the German Diabetes Center Düsseldorf, a partner of the DZD."One possible cause of increased WISP1 production and secretion from the abdominal fat cells could be the poor oxygen supply (hypoxia) of the tissues. This could lead to systemic inflammatory responses," explained DIfE researcher Pivovarova.

The new findings open up alternative approaches to the treatment of diseases caused by obesity. "For example, novel drugs could target and specifically prevent the WISP1 effect on muscles and liver cells and thus lead to improved insulin action in these tissues," said Rudovich, head diabetologist and endocrinologist at Spital Bülach. "However, it is still a long way from basic research (8) to a viable treatment", the physician added. Nevertheless, the new findings would already contribute to a better understanding of the relationships between obesity, the immune system and metabolic diseases.

Explore further: Culprit in reducing effectiveness of insulin identified

More information: Tina Hörbelt et al, The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes, Diabetologia (2018). DOI: 10.1007/s00125-018-4636-9

Related Stories

Culprit in reducing effectiveness of insulin identified

April 26, 2018
Scientists at Osaka University have discovered that Stromal derived factor-1 (SDF-1) secreted from adipocytes reduces the effectiveness of insulin in adipocytes and decreased insulin-induced glucose uptake.

Peptide improves glucose and insulin sensitivity, lowers weight in mice

February 8, 2018
Treating obese mice with catestatin (CST), a peptide naturally occurring in the body, showed significant improvement in glucose and insulin tolerance and reduced body weight, report University of California San Diego School ...

Diabetes: Immune system can regulate insulin

November 21, 2017
Inflammation processes are responsible for the failure of insulin production in diabetes patients. The patients' own immune systems can contribute to treatment of this disease: researchers at the University of Basel and University ...

Insulin signaling molecule in liver controls levels of triglyceride in blood

October 19, 2017
A new animal study shows how insulin controls the movement and storage of fat molecules in the liver and how a breakdown in this system could lead to non-alcoholic fatty liver disease and changes in circulating lipid levels ...

Critical link between obesity and diabetes has been identified

November 28, 2017
UT Southwestern researchers have identified a major mechanism by which obesity causes type 2 diabetes, which is a common complication of being overweight that afflicts more than 30 million Americans and over 400 million ...

Insulin resistance reversed by removal of protein

November 3, 2016
By removing the protein galectin-3 (Gal3), a team of investigators led by University of California School of Medicine researchers were able to reverse diabetic insulin resistance and glucose intolerance in mouse models of ...

Recommended for you

Weight gain after smoking cessation linked to increased short-term diabetes risk

August 15, 2018
People who gain weight after they quit smoking may face a temporary increase in the risk of developing type 2 diabetes, with the risk directly proportional to the weight gain, according to a new study from Harvard T.H. Chan ...

Evening preference, lack of sleep associated with higher BMI in people with prediabetes

August 15, 2018
People with prediabetes who go to bed later, eat meals later and are more active and alert later in the day—those who have an "evening preference"—have higher body mass indices compared with people with prediabetes who ...

Healthy fat cells uncouple obesity from diabetes

August 14, 2018
About 422 million people around the world, including more than 30 million Americans, have diabetes. Approximately ninety percent of them have type 2 diabetes. People with this condition cannot effectively use insulin, a hormone ...

'Alarming' diabetes epidemic in Guatemala tied to aging, not obesity

August 14, 2018
The diabetes epidemic in Guatemala is worse than previously thought: more than 25 percent of its indigenous people, who make up 60 percent of the population, suffer from type 2 diabetes or pre-diabetes, suggests a new study ...

Gut reaction linked to type 1 diabetes

August 13, 2018
Understanding the link between diabetes and the gut could lead to the development of new therapies to delay the onset of type 1 diabetes, according to University of Queensland researchers.

Early age of type 1 diabetes diagnosis linked to shorter life expectancy, compared to later diagnosis

August 10, 2018
Life-expectancy for individuals with younger-onset disease is on average 16 years shorter compared to people without diabetes, and 10 years shorter for those diagnosed at an older age

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.