Insulin signaling molecule in liver controls levels of triglyceride in blood

October 19, 2017, Perelman School of Medicine at the University of Pennsylvania
Oil red O staining of lipids in mouse liver: A, Normal, B, Fatty. Credit: Paul Titchenell, PhD, Perelman School of Medicine, University of Pennsylvania

A new animal study shows how insulin controls the movement and storage of fat molecules in the liver and how a breakdown in this system could lead to non-alcoholic fatty liver disease and changes in circulating lipid levels associated with cardiovascular disease. Researchers from the Perelman School of Medicine at the University of Pennsylvania published their findings this week in the Journal of Clinical Investigation (JCI).

"The production of triglyceride in the liver and its secretion into blood are closely linked to nutrient availability and levels," said senior author Paul Titchenell, PhD, an assistant professor of Physiology and a member of the Institute for Diabetes, Obesity, and Metabolism. "After a meal, insulin tells the liver to package and secrete excess nutrients into triglyceride-rich lipid particles into the blood for use by the rest of the body."

After eating, glucose rises, which induces insulin release to control by increasing glucose uptake and reducing glucose production by the liver. In addition to glucose regulation, insulin also controls blood in part by increasing lipid synthesis, uptake, and storage in fat cells.

In the JCI paper, the team demonstrated that mTOR complex 1 (mTORC1), a protein super-molecule made up of several smaller proteins, is essential for very low density lipoprotein (VLDL)-triglyceride production. VLDL-triglyceride molecules are exported by the liver and carry lipids to peripheral tissues. "This is important because in metabolic diseases associated with insulin resistance the liver makes more triglycerides, which leads to increased levels in the blood and eventually cardiovascular disease," Titchenell said.

In mice, the absence of mTORC1 in caused a build-up of triglycerides in the liver, thereby reducing circulating triglycerides. On the other hand, activation of mTORC1 depleted liver triglycerides and increased blood triglycerides. Titchenell identified an important cellular process controlled by mTORC1 and demonstrated that mTORC1 controls the production of another class of molecules called phospholipids, which are essential for the triglyceride export from the liver. Phospholipids are necessary to form a barrier around triglyceride molecules allowing for their export and transport throughout the body.

"In insulin-resistant disorders such as diabetes and obesity, hyperactive mTORC1 in liver leads to excess fat production and export," Titchenell said. "mTORC1 is what we want to target pharmacologically to decrease the risk of that is associated with obesity and diabetes. If we could affect mTORC1 in a balanced way, then maybe could help prevent non-alcoholic and heart disease."

In the future, the researchers aim to unravel the precise mechanisms that mediate mTORC1's control of phospholipid synthesis to uncover novel drug targets with the goal of reducing the excess lipid burden during metabolic disease.

Explore further: Diabetes debate: Triglycerides form in liver despite insulin resistance

Related Stories

Diabetes debate: Triglycerides form in liver despite insulin resistance

January 5, 2015
Solving one of the great mysteries of type 2 diabetes, a team of Yale researchers found that triglycerides, a type of fat in the blood and liver, are produced in the liver independent of insulin action in the liver.

Enzyme produced in the liver promotes obesity, fatty liver disease and insulin resistance

August 25, 2017
In mice that are fed a high-fat diet, an increased production of the enzyme DPP4 by the liver promotes an increase in body fat, the development of fatty liver disease and insulin resistance. These were the findings of a study ...

Estrogen may improve pathway-selective insulin resistance

February 14, 2013
(HealthDay)—Estrogen treatment at the time of surgical menopause may reverse aspects of pathway-selective insulin resistance in the liver associated with a high-fat diet (HFD) in mice by promoting insulin action on glucose ...

Silencing fat protein improves obesity and blood sugar

December 15, 2016
In a study published in the Journal of Lipid Research, Saint Louis University scientist Angel Baldan, Ph.D., reports that turning off a protein found in liver and adipose tissue significantly improves blood sugar levels, ...

Penn Study Explains Paradox of Insulin Resistance Genetics

October 25, 2011
(Medical Xpress) -- Obesity and insulin resistance are almost inevitably associated with increases in lipid accumulation in the liver, a serious disease that can deteriorate to hepatitis and liver failure.  A real paradox ...

A single episode of high fat intake injures liver metabolism

January 23, 2017
Diets that are consistently high in saturated fat are linked to the development of non-alcoholic fatty liver disease and insulin resistance, but it's not clear how high fat foods initiate the changes that lead to disease.

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.