Researchers create advanced brain organoid to model strokes, screen drugs

May 29, 2018, Wake Forest University Baptist Medical Center
Illustrated damage to the blood brain barrier under ischemic conditions. Credit: WFIRM

Wake Forest Institute for Regenerative Medicine (WFIRM) scientists have developed a 3-D brain organoid that could have potential applications in drug discovery and disease modeling. This is the first engineered tissue equivalent to closely resemble normal human brain anatomy, containing all six major cell types found in normal organs including, neurons and immune cells.

In a study published this month in Scientific Reports, the researchers report that their advanced 3-D organoids promote the formation of a fully cell-based, natural and functional barrier—the —that mimics normal human anatomy.

The blood barrier is a semipermeable membrane that separates the circulating blood from the brain, protecting it from foreign substances that could cause injury. This development is important because the model can help to further understanding of disease mechanisms at the blood brain barrier, the passage of drugs through the barrier, and the effects of drugs once they cross the barrier.

"The shortage of effective therapies and low success rate of investigational drugs are due in part because we do not have a human-like tissue models for testing," said senior author Anthony Atala, M.D., director of WFIRM. "The development of tissue engineered 3-D brain tissue equivalents such as these can help advance the science toward better treatments and improve patients' lives."

The development of the model opens the door to speedier discovery and screening, both for neurological conditions and for diseases like HIV where pathogens hide in the brain and avoid current treatments that cannot cross the blood brain barrier. It may also allow for disease modeling of neurological conditions such as Alzheimer's disease, multiple sclerosis and Parkinson's so that researchers can better understand their pathways and progression.

Thus far the researchers have used the brain organoids to mimic strokes in order to measure impairment of the blood brain barrier and have successfully tested the model's permeability with large and small molecules.

"Using an engineered tissue model provides a platform that can be used to understand the fundamental principles at play with the brain and its function, as well as the effects of chemical substances that cross it," said Goodwell Nzou, a Ph.D. candidate at WFIRM who co-authored the paper.

Explore further: New model may help science overcome the brain's fortress-like barrier

More information: Goodwell Nzou et al, Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling, Scientific Reports (2018). DOI: 10.1038/s41598-018-25603-5

Related Stories

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Potential new approach to the treatment of multiple sclerosis

March 5, 2018
A prospective new method of treating patients with multiple sclerosis has been proposed by researchers of the Mainz University Medical Center working in cooperation with researchers of the University of Montreal. In model ...

Building a better blood-brain barrier model

June 6, 2017
Delivering drugs to the brain is no easy task. The blood-brain barrier -a protective sheath of tissue that shields the brain from harmful chemicals and invaders - cannot be penetrated by most therapeutics that are injected ...

Atlas of brain blood vessels provides fresh clues to brain diseases

February 14, 2018
Diseases of the brain vasculature are some of the most common causes of death in the West, but knowledge of brain blood vessels is limited. Now, researchers from Uppsala University and Karolinska Institutet in Sweden have ...

What is the blood-brain barrier and how can we overcome it?

April 6, 2017
The brain is precious, and evolution has gone to great lengths to protect it from damage. The most obvious is our 7mm thick skull, but the brain is also surrounded by protective fluid (cerebrospinal – of the brain and spine) ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.