Elevated homocysteine identified as metabolic risk factor for neurodegenerative diseases

May 16, 2018, Temple University
Domenico Praticò, MD, Scott Richards North Star Foundation Chair for Alzheimer's Research, Professor in the Departments of Pharmacology and Microbiology, Director of the Alzheimer's Center at Temple in the Lewis Katz School of Medicine at Temple University, and senior investigator on the study Credit: Lewis Katz School of Medicine at Temple University

The amino acid homocysteine occurs naturally in the human body, generated as a byproduct of methionine metabolism. Genetic diseases or an imbalanced diet, with too much red meat or deficiencies in B vitamins and folic acid, however, can lead to high homocysteine levels, a condition known as hyperhomocysteinemia. This condition causes considerable harm to the heart but can also affect the brain.

Now, in a new study published online in the journal Molecular Psychiatry, researchers at the Lewis Katz School of Medicine at Temple University further reveal the extent to which elevated homocysteine damages the brain. In mice, they show that diet-induced increases in homocysteine levels directly contribute to the development of damaging neurofibrillary tangles, which result from the progressive accumulation of abnormal tau protein in the brain. Tau neurofibrillary tangle accumulation is a major contributor to nerve cell death, dementia, and neurodegenerative disease.

"Abnormal tau is responsible for the formation of neurofibrillary tangles in the brain of Alzheimer's disease and other forms of dementia," explained Domenico Praticò, MD, Scott Richards North Star Foundation Chair for Alzheimer's Research, Professor in the Departments of Pharmacology and Microbiology, Director of the Alzheimer's Center at Temple in the Lewis Katz School of Medicine at Temple University (LKSOM), and senior investigator on the new report. "From previous research we knew that hyperhomocysteinemia is a risk factor for Alzheimer's disease, affecting memory and the formation of harmful amyloid beta plaques in the brain. However, it was unclear whether it also influenced tau neurofibrillary tangle formation, which is the second-most important brain lesion in Alzheimer's disease, in addition to amyloid plaques."

To explore this question, Dr. Praticò and colleagues used a dietary approach in mice, inducing an increase in homocysteine levels by implementing a diet deficient in folic acid and vitamins B6 and B12. The researchers specifically used mice engineered to develop only tau tangles, with no amyloid plaque formation, enabling them to investigate a possible direct effect of homocysteine on the development of tau lesions.

Starting at four months of age, tau mice were put on the vitamin-deficient diet. Eight months later, the animals were tested in their learning and memory abilities in a water maze test. Compared with control tau mice, which ate a regular diet throughout the study, tau mice on the vitamin-deficient diet performed significantly worse, showing impairments in learning a new task and, most importantly, in their ability to remember the task.

To better understand why, the researchers examined brain tissues from both groups of mice. "We observed that the brains of the animals receiving the deficient diet had not only increased homocysteine levels but also a 50 percent increase in the amount of tau tangles in the hippocampus and cortex, relative to control animals," Dr. Praticò said. Levels of insoluble, toxic tau protein, which causes neuron death, were also elevated, and cells exhibited disruption in the integrity of their synapses, the junctions between neurons that allow the cells to communicate.

Dr. Praticò's team further discovered that one of the earliest changes that the elevated induced in the brain is the activation of a protein called 5-lipoxygenase (5LO). By controlling the cdk5 enzyme, 5LO is ultimately responsible for the formation of abnormal tau and the development of .

According to Dr. Praticò, the next step is to find out whether the damage caused by high homocysteine and mediated by 5LO can be blocked. "Now that we know for the first time that homocysteine acts via 5LO to induce the abnormal tau tangle formation and nerve cell death, next we can test whether blocking 5LO can prevent the damage secondary to high homocysteine," he said. His team is also interested in testing whether 5LO blockade can reverse -induced nerve cell damage after it has been established.

Explore further: Extra-virgin olive oil preserves memory and protects brain against Alzheimer's: study

Related Stories

Extra-virgin olive oil preserves memory and protects brain against Alzheimer's: study

June 21, 2017
The Mediterranean diet, rich in plant-based foods, is associated with a variety of health benefits, including a lower incidence of dementia. Now, researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) ...

Canola oil linked to worsened memory and learning ability in Alzheimer's

December 7, 2017
Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers ...

Homocysteine tied to Alzheimer's via A-beta-fibrinogen interaction

April 25, 2016
(HealthDay)—Plasma homocysteine (HC) and its metabolite homocysteine thiolactone (HCTL) contribute to Alzheimer's disease (AD) pathology via the amyloid-β (Aβ)-fibrinogen interaction, according to a study published online ...

Glucose deprivation in the brain sets stage for Alzheimer's disease, study shows

January 31, 2017
One of the earliest signs of Alzheimer's disease is a decline in glucose levels in the brain. It appears in the early stages of mild cognitive impairment—before symptoms of memory problems begin to surface. Whether it is ...

Stress hormone could trigger mechanism for the onset of Alzheimer's

June 21, 2013
(Medical Xpress)—A chemical hormone released in the body as a reaction to stress could be a key trigger of the mechanism for the late onset of Alzheimer's disease, according to a study by researchers at Temple University.

Recommended for you

Social media is affecting the way we view our bodies—and not in a good way

November 15, 2018
Young women who actively engage with social media images of friends who they think are more attractive than themselves report feeling worse about their own appearance afterward, a York University study shows.

Study finds mindfulness apps can improve mental health

November 15, 2018
A University of Otago study has found that using mindfulness meditation applications (apps) on phones is associated with improvements in people's mental health.

New research has revealed we are actually better at remembering names than faces

November 14, 2018
With the Christmas party season fast approaching, there will be plenty of opportunity to re-live the familiar, and excruciatingly-awkward, social situation of not being able to remember an acquaintance's name.

Older adults' abstract reasoning ability predicts depressive symptoms over time

November 14, 2018
Age-related declines in abstract reasoning ability predict increasing depressive symptoms in subsequent years, according to data from a longitudinal study of older adults in Scotland. The research is published in Psychological ...

The illusion of multitasking boosts performance

November 13, 2018
Our ability to do things well suffers when we try to complete several tasks at once, but a series of experiments suggests that merely believing that we're multitasking may boost our performance by making us more engaged in ...

Brain changes found in self-injuring teen girls

November 13, 2018
The brains of teenage girls who engage in serious forms of self-harm, including cutting, show features similar to those seen in adults with borderline personality disorder, a severe and hard-to-treat mental illness, a new ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.