Gene loss can lead to accumulation of waste products in cells

May 7, 2018 by Anne Trafton, Massachusetts Institute of Technology
Biologists compared C. elegans embryos missing the alfa-1 gene, right, to those with the gene, left. At bottom right, abnormal blobs of yolk labeled with a fluorescent protein can be seen in the embryo lacking alfa-1. Credit: Anna Corrionero Saiz

MIT biologists have discovered a function of a gene that is believed to account for up to 40 percent of all familial cases of amyotrophic lateral sclerosis (ALS). Studies of ALS patients have shown that an abnormally expanded region of DNA in a specific region of this gene can cause the disease.

In a study of the microscopic worm Caenorhabditis elegans, the researchers found that the gene has a key role in helping cells to remove waste products via structures known as lysosomes. When the gene is mutated, these unwanted substances build up inside cells. The researchers believe that if this also happens in neurons of human ALS patients, it could account for some of those patients' symptoms.

"Our studies indicate what happens when the activities of such a gene are inhibited—defects in lysosomal function. Certain features of ALS are consistent with their being caused by defects in , such as inflammation," says H. Robert Horvitz, the David H. Koch Professor of Biology at MIT, a member of the McGovern Institute for Brain Research and the Koch Institute for Integrative Cancer Research, and the senior author of the study.

Mutations in this gene, known as C9orf72, have also been linked to another neurodegenerative brain disorder known as (FTD), which is estimated to affect about 60,000 people in the United States.

"ALS and FTD are now thought to be aspects of the same disease, with different presentations. There are genes that when mutated cause only ALS, and others that cause only FTD, but there are a number of other genes in which mutations can cause either ALS or FTD or a mixture of the two," says Anna Corrionero, an MIT postdoc and the lead author of the paper, which appears in the May 3 issue of the journal Current Biology.

Genetic link

Scientists have identified dozens of linked to familial ALS, which occurs when two or more family members suffer from the disease. Doctors believe that genetics may also be a factor in nonfamilial cases of the disease, which are much more common, accounting for 90 percent of cases.

Of all ALS-linked mutations identified so far, the C9orf72 mutation is the most prevalent, and it is also found in about 25 percent of frontotemporal dementia patients. The MIT team set out to study the gene's function in C. elegans, which has an equivalent gene known as alfa-1.

In studies of worms that lack alfa-1, the researchers discovered that defects became apparent early in embryonic development. C. elegans embryos have a yolk that helps to sustain them before they hatch, and in embryos missing alfa-1, the researchers found "blobs" of yolk floating in the fluid surrounding the embryos.

This led the researchers to discover that the gene mutation was affecting the lysosomal degradation of yolk once it is absorbed into the cells. Lysosomes, which also remove cellular waste products, are cell structures which carry enzymes that can break down many kinds of molecules.

When lysosomes degrade their contents—such as yolk—they are reformed into tubular structures that split, after which they are able to degrade other materials. The MIT team found that in cells with the alfa-1 mutation and impaired lysosomal degradation, lysosomes were unable to reform and could not be used again, disrupting the cell's waste removal process.

"It seems that lysosomes do not reform as they should, and material accumulates in the cells," Corrionero says.

For C. elegans embryos, that meant that they could not properly absorb the nutrients found in yolk, which made it harder for them to survive under starvation conditions. The embryos that did survive appeared to be normal, the researchers say.

Neuronal effects

The researchers were able to partially reverse the effects of alfa-1 loss in the C. elegans embryos by expressing the human protein encoded by the c9orf72 gene. "This suggests that the worm and human proteins are performing the same molecular function," Corrionero says.

If loss of C9orf72 affects lysosome function in human neurons, it could lead to a slow, gradual buildup of waste products in those cells. ALS usually affects cells of the motor cortex, which controls movement, and motor neurons in the spinal cord, while frontotemporal dementia affects the frontal areas of the brain's cortex.

"If you cannot degrade things properly in cells that live for very long periods of time, like neurons, that might well affect the survival of the and lead to disease," Corrionero says.

Many pharmaceutical companies are now researching drugs that would block the expression of the mutant C9orf72. The new study suggests certain possible side effects to watch for in studies of such drugs.

"If you generate drugs that decrease c9orf72 expression, you might cause problems in lysosomal homeostasis," Corrionero says. "In developing any drug, you have to be careful to watch for possible side effects. Our observations suggest some things to look for in studying drugs that inhibit C9orf72 in ALS/FTD patients."

Explore further: The toxic relationship between ALS and frontotemporal dementia

Related Stories

The toxic relationship between ALS and frontotemporal dementia

February 5, 2018
ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new USC Stem Cell study published in Nature Medicine.

New areas of the brain identified where ALS-implicated gene is active

August 1, 2016
For the first time novel expression sites in the brain have been identified for a gene which is associated with motor neuron disease and frontotemporal dementia.

Genetic defects in the cell's 'waste disposal system' linked to Parkinson's disease

November 14, 2017
An international study has shed new light on the genetic factors associated with Parkinson's disease, pointing at a group of lysosomal storage disorder genes as potential major contributors to the onset and progression of ...

Granulins are brain treasure, not trash

August 14, 2017
Emory University School of Medicine researchers have developed tools that enable them to detect small proteins called granulins for the first time inside cells. Granulins are of interest to neuroscientists because mutations ...

Researchers find that immune cells play unexpected role in Lou Gehrig's disease

March 17, 2016
Cedars-Sinai research scientists have found that immune cells in the brain play a direct role in the development of amyotrophic lateral sclerosis, or ALS, offering hope for new therapies to target the neurodegenerative disease ...

Researchers reveal how a common mutation causes neurodegenerative disease

August 26, 2015
Researchers have determined how the most common gene mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) disrupts normal cell function, providing insight likely to advance efforts to develop ...

Recommended for you

New tool gives deeper understanding of glioblastoma

October 22, 2018
Researchers in the lab of Charles Danko at the Baker Institute for Animal Health have developed a new tool to study genetic "switches" active in glioblastoma tumors that drive growth of the cancer. In a new paper in Nature ...

RNA thought to spread cancer shows ability to suppress breast cancer metastasis

October 22, 2018
Researchers at The University of Texas MD Anderson Cancer Center have discovered that a form of RNA called metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appears to suppress breast cancer metastasis in mice, ...

Researchers find common genetic link in lung ailments

October 22, 2018
An international research team led by members of the University of Colorado School of Medicine faculty has identified a genetic connection between rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary ...

A single missing gene leads to miscarriage

October 19, 2018
A single gene from the mother plays such a crucial role in the development of the placenta that its dysfunction leads to miscarriages. Researchers from the Medical Faculty of Ruhr-Universität Bochum (RUB) have observed this ...

Making gene therapy delivery safer and more efficient

October 18, 2018
Viral vectors used to deliver gene therapies undergo spontaneous changes during manufacturing which affects their structure and function, found researchers from the Perelman School of Medicine at the University of Pennsylvania ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.