New genetic findings explain how embryos form arms and legs

May 24, 2018, Agency for Science, Technology and Research (A*STAR), Singapore

The current understanding of limb and lung development in humans does not capture the full picture of the process, according to research published in Nature last week. This paper describes the importance of novel genes for limb development, and shows how perceived wisdom about the process was incomplete.

An international group of clinicians and researchers from Singapore, Turkey, France, Portugal and India, studied five families with either malformations, or tetra-amelia syndrome that is characterised by the absence of lungs and all four limbs. They found that mutations in the RSPO2 gene lead to incomplete .

Until now, the RSPO proteins were believed to only work with their receptors called LGRs. Together, RSPO and LGRs were thought to allow limb formation by blocking two key enzymes ZNRF3 and RNF43.

Or so we thought.

The team then studied mice lacking all three LGRs required for RSPO2's function, and found that contrary to what was expected they still developed limbs and lungs normally. This indicates that RSPO2 does not need LGRs—disproving the established understanding of how this is happening.

"Our results establish that even without the LGR receptors, RSPO2, can bind to other molecules and constitute a master switch that governs limb ," says Dr. Emmanuelle Szenker-Ravi, a co-first author of the study based at Agency of Science, Technology and Research's (A*STAR) Institute of Medical Biology (IMB) in Singapore.

Together with collaborators in Belgium, the team went on to check this same pathway in frog models, and confirmed that the absence of RSPO2 prevents limb development. Interestingly, they showed for the first time the importance of ZNRF3 and RNF43 for proper limb development. Indeed, the biggest surprise came when they removed both ZNRF3 and RNF43, and discovered that frogs would grow extra arms and legs.

The lead author Professor Bruno Reversade, who is based at A*STAR in Singapore, speculates whether this may also help explain why some animals such as salamanders can regrow limbs after amputation. "We were puzzled by these results as this pathway is thought to be largely understood," Dr. Reversade says. "As ever, unexpected discoveries allow one to challenge the prevailing dogma and better capture the complexity of biology."

Beyond the formation and regeneration of limbs which have strong applications in regenerative medicine, the teams' findings also bear important implications in cancer research. The very same genes RSPO2, RNF43 and ZNRF3 are often found to be mutated and cause colorectal cancer. Thus the knowledge of how humans form limbs might provide new therapeutic options for cancer patients.

More information: Emmanuelle Szenker-Ravi et al. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6, Nature (2018). DOI: 10.1038/s41586-018-0118-y

Related Stories

Recommended for you

Skin wounds in older mice are less likely to scar

September 25, 2018
Researchers have discovered a rare example in which the mammalian body functions better in old age. A team at the University of Pennsylvania found that, in skin wounds in mice, being older increased tissue regeneration and ...

3-D bioPen: A hydrogel injection to regenerate cartilage

September 25, 2018
Highly specialized cartilage is characteristically avascular and non-neural in composition with low cell numbers in an aliphatic environment. Despite its apparent simplicity, bioengineering regenerative hyaline cartilage ...

Evidence that addictive behaviors have strong links with ancient retroviral infection

September 24, 2018
New research from an international team led by Oxford University's Department of Zoology and the National-Kapodistrian University of Athens, published today in Proceedings of the National Academy of Sciences (PNAS), shows ...

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.

Know someone sick? Your own smell might give it away

September 24, 2018
Odors surround us, providing cues about many aspects of personal identity, including health status. Now, research from the Monell Center extends the scope and significance of personal odors as a source of information about ...

New findings on the muscle disease Laing early-onset distal myopathy

September 24, 2018
New avenues are now being opened toward treatment of Laing distal myopathy, a rare disorder that causes atrophy of the muscles in the feet, hands and elsewhere. In a study published in the journal PNAS, researchers have identified ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.