Interconnected cells-in-a-dish let researchers study brain disease

May 3, 2018, Salk Institute
Salk researchers used stem cells to derive CA3 pyramidal neurons (green), including a rare subtype of the cells (red). Credit: Salk Institute

By creating multiple types of neurons from stem cells and observing how they interact, Salk scientists have developed a new way to study the connections between brain cells in the lab. Using the technique, which generates a partial model of the brain, the team showed how communication between neurons is altered in people with schizophrenia. The work appeared in Cell Stem Cell on May 3, 2018.

"In a lot of psychiatric diseases, there's evidence of dysfunction in the connections between ," says senior author Rusty Gage, a professor in Salk's Laboratory of Genetics. "But it's been very difficult to study the functional connections between human in the lab, until now."

Previously, researchers wanting to study the underlying molecular mechanism of a disease like would typically focus on one type of brain cell at a time and study whether the levels of genes or proteins were altered in disease cells, or whether signaling pathways seemed to be dysregulated.

Gage's team had formerly developed a method for using human to create dentate gyrus (DG) cells—key neurons in the brain's hippocampus that have been implicated in a number of psychiatric diseases. In the new work, they adapted that approach to coax stem cells down a different developmental pathway, creating CA3 pyramidal neurons—cells that receive signals from DG neurons in the hippocampus. The resulting CA3 neurons, the team showed, had diverse molecular identities.

"We weren't just getting one type of CA3 neurons," says Research Associate Anindita Sarkar, the paper's first and co-corresponding author. "We were getting a mixture that is a close representation of the mixture we see in a human brain." Moreover, when the team transplanted the cells into mouse hippocampi, the cells integrated themselves into the networks of neurons already there.

With that confirmation that the new brain cells were true CA3 neurons, the researchers began mixing them with DG neurons and studying how the cells interacted. Using a method called virus tracing—which relies on the propensity of the rabies virus to follow neuronal connections—they showed that CA3 neurons were forming physical connections both to other CA3 neurons and to DG neurons.

Finally, the team wanted to test out whether they could use these connected neurons to study disease. So they repeated their steps, this time starting with seven different sets of cells—three from people with schizophrenia, and four from healthy controls. They coaxed the cells to revert to their stem cell form, then generated both DG and CA3 neurons. As the neurons matured, the researchers found that there were fewer spikes of activity from the CA3 neurons generated from people with schizophrenia. They got similar findings when they mixed the DG and CA3 neurons—those in the schizophrenic group had dampened activity patterns and less signaling between the sets of neurons.

"There's been evidence that the hippocampus and DG cells are affected by schizophrenia," says Sarkar. "So it makes sense that if DG cells are affected, they're sending fewer signals to CA3 cells."

In the future, Gage's group would like to add additional cell types—such as CA1 neurons—to their model. They'd also like to study how neuronal connections are altered in other diseases.

"I think this is the next step in modeling with stem cells," says Sarkar. We've been doing well looking at individual cells over the last 10 years, but with this whole set of psychiatric diseases—from depression to autism to schizophrenia—we have to look at the connections, as well."

Explore further: Stem cell divisions in the adult brain seen for the first time

Related Stories

Stem cell divisions in the adult brain seen for the first time

February 8, 2018
Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons ...

Adult brain prunes branched connections of new neurons

May 2, 2016
When tweaking its architecture, the adult brain works like a sculptor—starting with more than it needs so it can carve away the excess to achieve the perfect design. That's the conclusion of a new study that tracked developing ...

Researchers develop new technique for modeling neuronal connectivity using stem cells

June 15, 2015
Human stem cells can be differentiated to produce other cell types, such as organ cells, skin cells, or brain cells. While organ cells, for example, can function in isolation, brain cells require synapses, or connectors, ...

Small molecule keeps new adult neurons from straying, may be tied to schizophrenia

July 6, 2016
A small stretch of ribonucleic acid called microRNA could make the difference between a healthy adult brain and one that's prone to disorders including schizophrenia.

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.